3,433 research outputs found

    Near-optimal Compressed Sensing Guarantees for Total Variation Minimization

    Get PDF
    Consider the problem of reconstructing a multidimensional signal from an underdetermined set of measurements, as in the setting of compressed sensing. Without any additional assumptions, this problem is ill-posed. However, for signals such as natural images or movies, the minimal total variation estimate consistent with the measurements often produces a good approximation to the underlying signal, even if the number of measurements is far smaller than the ambient dimensionality. This paper extends recent reconstruction guarantees for two-dimensional images x ∈ ℂN2 to signals x ∈ ℂNd of arbitrary dimension d ≥ 2 and to isotropic total variation problems. In this paper, we show that a multidimensional signal x ∈ ℂNd can be reconstructed from O(s dlog(Nd)) linear measurements y = Ax using total variation minimization to a factor of the best s-term approximation of its gradient. The reconstruction guarantees we provide are necessarily optimal up to polynomial factors in the spatial dimension d

    Near-optimal compressed sensing guarantees for anisotropic and isotropic total variation minimization

    Get PDF
    Consider the problem of reconstructing a multidimensional signal from partial information, as in the setting of compressed sensing. Without any additional assumptions, this problem is ill-posed. However, for signals such as natural images or movies, the minimal total variation estimate consistent with the measurements often produces a good approximation to the underlying signal, even if the number of measurements is far smaller than the ambient dimensionality. Recently, guarantees for two-dimensional images were established. This paper extends these theoretical results to signals of arbitrary dimension and to both the anisotropic and isotropic total variation problems. To be precise, we show that a multidimensional signal can be reconstructed from a small number of linear measurements using total variation minimization to within a factor of the best approximation of its gradient. The reconstruction guarantees we provide are necessarily optimal up to polynomial factors in the spatial dimension and a logarithmic factor in the signal dimension. The proof relies on bounds in approximation theory concerning the compressibility of wavelet expansions of bounded-variation functions

    Near-optimal compressed sensing guarantees for anisotropic and isotropic total variation minimization

    Full text link

    Stable image reconstruction using total variation minimization

    Get PDF
    This article presents near-optimal guarantees for accurate and robust image recovery from under-sampled noisy measurements using total variation minimization. In particular, we show that from O(slog(N)) nonadaptive linear measurements, an image can be reconstructed to within the best s-term approximation of its gradient up to a logarithmic factor, and this factor can be removed by taking slightly more measurements. Along the way, we prove a strengthened Sobolev inequality for functions lying in the null space of suitably incoherent matrices.Comment: 25 page

    Structured random measurements in signal processing

    Full text link
    Compressed sensing and its extensions have recently triggered interest in randomized signal acquisition. A key finding is that random measurements provide sparse signal reconstruction guarantees for efficient and stable algorithms with a minimal number of samples. While this was first shown for (unstructured) Gaussian random measurement matrices, applications require certain structure of the measurements leading to structured random measurement matrices. Near optimal recovery guarantees for such structured measurements have been developed over the past years in a variety of contexts. This article surveys the theory in three scenarios: compressed sensing (sparse recovery), low rank matrix recovery, and phaseless estimation. The random measurement matrices to be considered include random partial Fourier matrices, partial random circulant matrices (subsampled convolutions), matrix completion, and phase estimation from magnitudes of Fourier type measurements. The article concludes with a brief discussion of the mathematical techniques for the analysis of such structured random measurements.Comment: 22 pages, 2 figure

    Sampling in the Analysis Transform Domain

    Full text link
    Many signal and image processing applications have benefited remarkably from the fact that the underlying signals reside in a low dimensional subspace. One of the main models for such a low dimensionality is the sparsity one. Within this framework there are two main options for the sparse modeling: the synthesis and the analysis ones, where the first is considered the standard paradigm for which much more research has been dedicated. In it the signals are assumed to have a sparse representation under a given dictionary. On the other hand, in the analysis approach the sparsity is measured in the coefficients of the signal after applying a certain transformation, the analysis dictionary, on it. Though several algorithms with some theory have been developed for this framework, they are outnumbered by the ones proposed for the synthesis methodology. Given that the analysis dictionary is either a frame or the two dimensional finite difference operator, we propose a new sampling scheme for signals from the analysis model that allows to recover them from their samples using any existing algorithm from the synthesis model. The advantage of this new sampling strategy is that it makes the existing synthesis methods with their theory also available for signals from the analysis framework.Comment: 13 Pages, 2 figure
    • …
    corecore