4,948 research outputs found

    Approximation Algorithms for Polynomial-Expansion and Low-Density Graphs

    Full text link
    We study the family of intersection graphs of low density objects in low dimensional Euclidean space. This family is quite general, and includes planar graphs. We prove that such graphs have small separators. Next, we present efficient (1+ε)(1+\varepsilon)-approximation algorithms for these graphs, for Independent Set, Set Cover, and Dominating Set problems, among others. We also prove corresponding hardness of approximation for some of these optimization problems, providing a characterization of their intractability in terms of density

    Fast Distributed Algorithms for LP-Type Problems of Bounded Dimension

    Full text link
    In this paper we present various distributed algorithms for LP-type problems in the well-known gossip model. LP-type problems include many important classes of problems such as (integer) linear programming, geometric problems like smallest enclosing ball and polytope distance, and set problems like hitting set and set cover. In the gossip model, a node can only push information to or pull information from nodes chosen uniformly at random. Protocols for the gossip model are usually very practical due to their fast convergence, their simplicity, and their stability under stress and disruptions. Our algorithms are very efficient (logarithmic rounds or better with just polylogarithmic communication work per node per round) whenever the combinatorial dimension of the given LP-type problem is constant, even if the size of the given LP-type problem is polynomially large in the number of nodes

    Constant-Factor Approximation for TSP with Disks

    Full text link
    We revisit the traveling salesman problem with neighborhoods (TSPN) and present the first constant-ratio approximation for disks in the plane: Given a set of nn disks in the plane, a TSP tour whose length is at most O(1)O(1) times the optimal can be computed in time that is polynomial in nn. Our result is the first constant-ratio approximation for a class of planar convex bodies of arbitrary size and arbitrary intersections. In order to achieve a O(1)O(1)-approximation, we reduce the traveling salesman problem with disks, up to constant factors, to a minimum weight hitting set problem in a geometric hypergraph. The connection between TSPN and hitting sets in geometric hypergraphs, established here, is likely to have future applications.Comment: 14 pages, 3 figure

    The covert set-cover problem with application to Network Discovery

    Full text link
    We address a version of the set-cover problem where we do not know the sets initially (and hence referred to as covert) but we can query an element to find out which sets contain this element as well as query a set to know the elements. We want to find a small set-cover using a minimal number of such queries. We present a Monte Carlo randomized algorithm that approximates an optimal set-cover of size OPTOPT within O(logN)O(\log N) factor with high probability using O(OPTlog2N)O(OPT \cdot \log^2 N) queries where NN is the input size. We apply this technique to the network discovery problem that involves certifying all the edges and non-edges of an unknown nn-vertices graph based on layered-graph queries from a minimal number of vertices. By reducing it to the covert set-cover problem we present an O(log2n)O(\log^2 n)-competitive Monte Carlo randomized algorithm for the covert version of network discovery problem. The previously best known algorithm has a competitive ratio of Ω(nlogn)\Omega (\sqrt{n\log n}) and therefore our result achieves an exponential improvement

    Tighter Estimates for ϵ-nets for Disks

    Get PDF
    International audienceThe geometric hitting set problem is one of the basic geometric combinatorial optimization problems: given a set P of points, and a set D of geometric objects in the plane, the goal is to compute a small-sized subset of P that hits all objects in D. In 1994, Bronniman and Goodrich [5] made an important connection of this problem to the size of fundamental combinatorial structures called ϵ-nets, showing that small-sized ϵ-nets imply approximation algorithms with correspondingly small approximation ratios. Very recently, Agarwal and Pan [2] showed that their scheme can be implemented in near-linear time for disks in the plane. Altogether this gives O(1)-factor approximation algorithms in O(n) time for hitting sets for disks in the plane. This constant factor depends on the sizes of ϵ-nets for disks; unfortunately, the current state-of-the-art bounds are large – at least 24/ϵ and most likely larger than 40/ϵ. Thus the approximation factor of the Agarwal and Pan algorithm ends up being more than 40. The best lower-bound is 2/ϵ, which follows from the Pach-Woeginger construction [32] for halfplanes in two dimensions. Thus there is a large gap between the best-known upper and lower bounds. Besides being of independent interest, finding precise bounds is important since this immediately implies an improved linear-time algorithm for the hitting-set problem. The main goal of this paper is to improve the upper-bound to 13.4/ϵ for disks in the plane. The proof is constructive, giving a simple algorithm that uses only Delaunay triangulations. We have implemented the algorithm, which is available as a public open-source module. Experimental results show that the sizes of-nets for a variety of data-sets is lower, around 9/ϵ

    Towards Tight Bounds for the Streaming Set Cover Problem

    Full text link
    We consider the classic Set Cover problem in the data stream model. For nn elements and mm sets (mnm\geq n) we give a O(1/δ)O(1/\delta)-pass algorithm with a strongly sub-linear O~(mnδ)\tilde{O}(mn^{\delta}) space and logarithmic approximation factor. This yields a significant improvement over the earlier algorithm of Demaine et al. [DIMV14] that uses exponentially larger number of passes. We complement this result by showing that the tradeoff between the number of passes and space exhibited by our algorithm is tight, at least when the approximation factor is equal to 11. Specifically, we show that any algorithm that computes set cover exactly using (12δ1)({1 \over 2\delta}-1) passes must use Ω~(mnδ)\tilde{\Omega}(mn^{\delta}) space in the regime of m=O(n)m=O(n). Furthermore, we consider the problem in the geometric setting where the elements are points in R2\mathbb{R}^2 and sets are either discs, axis-parallel rectangles, or fat triangles in the plane, and show that our algorithm (with a slight modification) uses the optimal O~(n)\tilde{O}(n) space to find a logarithmic approximation in O(1/δ)O(1/\delta) passes. Finally, we show that any randomized one-pass algorithm that distinguishes between covers of size 2 and 3 must use a linear (i.e., Ω(mn)\Omega(mn)) amount of space. This is the first result showing that a randomized, approximate algorithm cannot achieve a space bound that is sublinear in the input size. This indicates that using multiple passes might be necessary in order to achieve sub-linear space bounds for this problem while guaranteeing small approximation factors.Comment: A preliminary version of this paper is to appear in PODS 201
    corecore