8 research outputs found

    Light Spanners

    Full text link
    A tt-spanner of a weighted undirected graph G=(V,E)G=(V,E), is a subgraph HH such that dH(u,v)tdG(u,v)d_H(u,v)\le t\cdot d_G(u,v) for all u,vVu,v\in V. The sparseness of the spanner can be measured by its size (the number of edges) and weight (the sum of all edge weights), both being important measures of the spanner's quality -- in this work we focus on the latter. Specifically, it is shown that for any parameters k1k\ge 1 and ϵ>0\epsilon>0, any weighted graph GG on nn vertices admits a (2k1)(1+ϵ)(2k-1)\cdot(1+\epsilon)-stretch spanner of weight at most w(MST(G))Oϵ(kn1/k/logk)w(MST(G))\cdot O_\epsilon(kn^{1/k}/\log k), where w(MST(G))w(MST(G)) is the weight of a minimum spanning tree of GG. Our result is obtained via a novel analysis of the classic greedy algorithm, and improves previous work by a factor of O(logk)O(\log k).Comment: 10 pages, 1 figure, to appear in ICALP 201

    Spanner Approximations in Practice

    Get PDF
    A multiplicative α\alpha-spanner HH is a subgraph of G=(V,E)G=(V,E) with the same vertices and fewer edges that preserves distances up to the factor α\alpha, i.e., dH(u,v)αdG(u,v)d_H(u,v)\leq\alpha\cdot d_G(u,v) for all vertices uu, vv. While many algorithms have been developed to find good spanners in terms of approximation guarantees, no experimental studies comparing different approaches exist. We implemented a rich selection of those algorithms and evaluate them on a variety of instances regarding, e.g., their running time, sparseness, lightness, and effective stretch

    Distribution-Sensitive Construction of the Greedy Spanner

    Full text link

    Near Optimal Multicriteria Spanner Constructions in Wireless Ad-Hoc Networks

    No full text

    A Unified and Fine-Grained Approach for Light Spanners

    Full text link
    Seminal works on light spanners from recent years provide near-optimal tradeoffs between the stretch and lightness of spanners in general graphs, minor-free graphs, and doubling metrics. In FOCS'19 the authors provided a "truly optimal" tradeoff for Euclidean low-dimensional spaces. Some of these papers employ inherently different techniques than others. Moreover, the runtime of these constructions is rather high. In this work, we present a unified and fine-grained approach for light spanners. Besides the obvious theoretical importance of unification, we demonstrate the power of our approach in obtaining (1) stronger lightness bounds, and (2) faster construction times. Our results include: _ KrK_r-minor-free graphs: A truly optimal spanner construction and a fast construction. _ General graphs: A truly optimal spanner -- almost and a linear-time construction with near-optimal lightness. _ Low dimensional Euclidean spaces: We demonstrate that Steiner points help in reducing the lightness of Euclidean 1+ϵ1+\epsilon-spanners almost quadratically for d3d\geq 3.Comment: We split this paper into two papers: arXiv:2106.15596 and arXiv:2111.1374
    corecore