53,961 research outputs found

    Evaluating distributed cognitive resources for wayfinding in a desktop virtual environment.

    Get PDF
    As 3D interfaces, and in particular virtual environments, become increasingly realistic there is a need to investigate the location and configuration of information resources, as distributed in the humancomputer system, to support any required activities. It is important for the designer of 3D interfaces to be aware of information resource availability and distribution when considering issues such as cognitive load on the user. This paper explores how a model of distributed resources can support the design of alternative aids to virtual environment wayfinding with varying levels of cognitive load. The wayfinding aids have been implemented and evaluated in a desktop virtual environment

    Trail records and navigational learning

    Get PDF
    An emerging wave of 'ambient' technologies has the potential to support learning in new and particular ways. In this paper we propose a 'trail model' of 'navigational learning' which links some particular learning needs to the potentialities of these technologies. In this context, we outline the design and use of an 'experience recorder', a technology to support learning in museums. In terms of policy for the e-society, these proposals are relevant to the need for personalised and individualised learning support

    Is spatial intelligibility critical to the design of largescale virtual environments?

    Get PDF
    This paper discusses the concept of 'intelligibility', a concept usually attributed to the design of real-world environments and suggests how it might be applied to the construction of virtual environments. In order to illustrate this concept, a 3d, online, collaborative environment, AlphaWorld, is analyzed in a manner analogous to spatial analysis techniques applied to cities in the real world. The outcome of this form of spatial analysis is that AlphaWorld appears to be highly 'intelligible' at the small-scale, 'local neighborhood' level, and yet is completely 'unintelligible' at a global level. This paper concludes with a discussion of the relevance of this finding to virtual environment design plus future research applications

    Virtual-to-Real-World Transfer Learning for Robots on Wilderness Trails

    Full text link
    Robots hold promise in many scenarios involving outdoor use, such as search-and-rescue, wildlife management, and collecting data to improve environment, climate, and weather forecasting. However, autonomous navigation of outdoor trails remains a challenging problem. Recent work has sought to address this issue using deep learning. Although this approach has achieved state-of-the-art results, the deep learning paradigm may be limited due to a reliance on large amounts of annotated training data. Collecting and curating training datasets may not be feasible or practical in many situations, especially as trail conditions may change due to seasonal weather variations, storms, and natural erosion. In this paper, we explore an approach to address this issue through virtual-to-real-world transfer learning using a variety of deep learning models trained to classify the direction of a trail in an image. Our approach utilizes synthetic data gathered from virtual environments for model training, bypassing the need to collect a large amount of real images of the outdoors. We validate our approach in three main ways. First, we demonstrate that our models achieve classification accuracies upwards of 95% on our synthetic data set. Next, we utilize our classification models in the control system of a simulated robot to demonstrate feasibility. Finally, we evaluate our models on real-world trail data and demonstrate the potential of virtual-to-real-world transfer learning.Comment: iROS 201

    Automated design analysis, assembly planning and motion study analysis using immersive virtual reality

    Get PDF
    Previous research work at Heriot-Watt University using immersive virtual reality (VR) for cable harness design showed that VR provided substantial productivity gains over traditional computer-aided design (CAD) systems. This follow-on work was aimed at understanding the degree to which aspects of this technology were contributed to these benefits and to determine if engineering design and planning processes could be analysed in detail by nonintrusively monitoring and logging engineering tasks. This involved using a CAD-equivalent VR system for cable harness routing design, harness assembly and installation planning that can be functionally evaluated using a set of creative design-tasks to measure the system and users' performance. A novel design task categorisation scheme was created and formalised which broke down the cable harness design process and associated activities. The system was also used to demonstrate the automatic generation of usable bulkhead connector, cable harness assembly and cable harness installation plans from non-intrusive user logging. Finally, the data generated from the user-logging allowed the automated activity categorisation of the user actions, automated generation of process flow diagrams and chronocyclegraphs

    DEEP: a provenance-aware executable document system

    Get PDF
    The concept of executable documents is attracting growing interest from both academics and publishers since it is a promising technology for the dissemination of scientific results. Provenance is a kind of metadata that provides a rich description of the derivation history of data products starting from their original sources. It has been used in many different e-Science domains and has shown great potential in enabling reproducibility of scientific results. However, while both executable documents and provenance are aimed at enhancing the dissemination of scientific results, little has been done to explore the integration of both techniques. In this paper, we introduce the design and development of DEEP, an executable document environment that generates scientific results dynamically and interactively, and also records the provenance for these results in the document. In this system, provenance is exposed to users via an interface that provides them with an alternative way of navigating the executable document. In addition, we make use of the provenance to offer a document rollback facility to users and help to manage the system's dynamic resources

    Interpretation at the controller's edge: designing graphical user interfaces for the digital publication of the excavations at Gabii (Italy)

    Get PDF
    This paper discusses the authors’ approach to designing an interface for the Gabii Project’s digital volumes that attempts to fuse elements of traditional synthetic publications and site reports with rich digital datasets. Archaeology, and classical archaeology in particular, has long engaged with questions of the formation and lived experience of towns and cities. Such studies might draw on evidence of local topography, the arrangement of the built environment, and the placement of architectural details, monuments and inscriptions (e.g. Johnson and Millett 2012). Fundamental to the continued development of these studies is the growing body of evidence emerging from new excavations. Digital techniques for recording evidence “on the ground,” notably SFM (structure from motion aka close range photogrammetry) for the creation of detailed 3D models and for scene-level modeling in 3D have advanced rapidly in recent years. These parallel developments have opened the door for approaches to the study of the creation and experience of urban space driven by a combination of scene-level reconstruction models (van Roode et al. 2012, Paliou et al. 2011, Paliou 2013) explicitly combined with detailed SFM or scanning based 3D models representing stratigraphic evidence. It is essential to understand the subtle but crucial impact of the design of the user interface on the interpretation of these models. In this paper we focus on the impact of design choices for the user interface, and make connections between design choices and the broader discourse in archaeological theory surrounding the practice of the creation and consumption of archaeological knowledge. As a case in point we take the prototype interface being developed within the Gabii Project for the publication of the Tincu House. In discussing our own evolving practices in engagement with the archaeological record created at Gabii, we highlight some of the challenges of undertaking theoretically-situated user interface design, and their implications for the publication and study of archaeological materials
    • …
    corecore