685 research outputs found

    A longitudinal observational study of home-based conversations for detecting early dementia:protocol for the CUBOId TV task

    Get PDF
    INTRODUCTION: Limitations in effective dementia therapies mean that early diagnosis and monitoring are critical for disease management, but current clinical tools are impractical and/or unreliable, and disregard short-term symptom variability. Behavioural biomarkers of cognitive decline, such as speech, sleep and activity patterns, can manifest prodromal pathological changes. They can be continuously measured at home with smart sensing technologies, and permit leveraging of interpersonal interactions for optimising diagnostic and prognostic performance. Here we describe the ContinUous behavioural Biomarkers Of cognitive Impairment (CUBOId) study, which explores the feasibility of multimodal data fusion for in-home monitoring of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). The report focuses on a subset of CUBOId participants who perform a novel speech task, the ‘TV task’, designed to track changes in ecologically valid conversations with disease progression. METHODS AND ANALYSIS: CUBOId is a longitudinal observational study. Participants have diagnoses of MCI or AD, and controls are their live-in partners with no such diagnosis. Multimodal activity data were passively acquired from wearables and in-home fixed sensors over timespans of 8–25 months. At two time points participants completed the TV task over 5 days by recording audio of their conversations as they watched a favourite TV programme, with further testing to be completed after removal of the sensor installations. Behavioural testing is supported by neuropsychological assessment for deriving ground truths on cognitive status. Deep learning will be used to generate fused multimodal activity-speech embeddings for optimisation of diagnostic and predictive performance from speech alone. ETHICS AND DISSEMINATION: CUBOId was approved by an NHS Research Ethics Committee (Wales REC; ref: 18/WA/0158) and is sponsored by University of Bristol. It is supported by the National Institute for Health Research Clinical Research Network West of England. Results will be reported at conferences and in peer-reviewed scientific journals

    Computational Language Assessment in patients with speech, language, and communication impairments

    Full text link
    Speech, language, and communication symptoms enable the early detection, diagnosis, treatment planning, and monitoring of neurocognitive disease progression. Nevertheless, traditional manual neurologic assessment, the speech and language evaluation standard, is time-consuming and resource-intensive for clinicians. We argue that Computational Language Assessment (C.L.A.) is an improvement over conventional manual neurological assessment. Using machine learning, natural language processing, and signal processing, C.L.A. provides a neuro-cognitive evaluation of speech, language, and communication in elderly and high-risk individuals for dementia. ii. facilitates the diagnosis, prognosis, and therapy efficacy in at-risk and language-impaired populations; and iii. allows easier extensibility to assess patients from a wide range of languages. Also, C.L.A. employs Artificial Intelligence models to inform theory on the relationship between language symptoms and their neural bases. It significantly advances our ability to optimize the prevention and treatment of elderly individuals with communication disorders, allowing them to age gracefully with social engagement.Comment: 36 pages, 2 figures, to be submite

    Toward the Automation of Diagnostic Conversation Analysis in Patients with Memory Complaints.

    Get PDF
    BACKGROUND: The early diagnosis of dementia is of great clinical and social importance. A recent study using the qualitative methodology of conversation analysis (CA) demonstrated that language and communication problems are evident during interactions between patients and neurologists, and that interactional observations can be used to differentiate between cognitive difficulties due to neurodegenerative disorders (ND) or functional memory disorders (FMD). OBJECTIVE: This study explores whether the differential diagnostic analysis of doctor-patient interactions in a memory clinic can be automated. METHODS: Verbatim transcripts of conversations between neurologists and patients initially presenting with memory problems to a specialist clinic were produced manually (15 with FMD, and 15 with ND). A range of automatically detectable features focusing on acoustic, lexical, semantic, and visual information contained in the transcripts were defined aiming to replicate the diagnostic qualitative observations. The features were used to train a set of five machine learning classifiers to distinguish between ND and FMD. RESULTS: The mean rate of correct classification between ND and FMD was 93% ranging from 97% by the Perceptron classifier to 90% by the Random Forest classifier.Using only the ten best features, the mean correct classification score increased to 95%. CONCLUSION: This pilot study provides proof-of-principle that a machine learning approach to analyzing transcripts of interactions between neurologists and patients describing memory problems can distinguish people with neurodegenerative dementia from people with FMD

    Conversational affective social robots for ageing and dementia support

    Get PDF
    Socially assistive robots (SAR) hold significant potential to assist older adults and people with dementia in human engagement and clinical contexts by supporting mental health and independence at home. While SAR research has recently experienced prolific growth, long-term trust, clinical translation and patient benefit remain immature. Affective human-robot interactions are unresolved and the deployment of robots with conversational abilities is fundamental for robustness and humanrobot engagement. In this paper, we review the state of the art within the past two decades, design trends, and current applications of conversational affective SAR for ageing and dementia support. A horizon scanning of AI voice technology for healthcare, including ubiquitous smart speakers, is further introduced to address current gaps inhibiting home use. We discuss the role of user-centred approaches in the design of voice systems, including the capacity to handle communication breakdowns for effective use by target populations. We summarise the state of development in interactions using speech and natural language processing, which forms a baseline for longitudinal health monitoring and cognitive assessment. Drawing from this foundation, we identify open challenges and propose future directions to advance conversational affective social robots for: 1) user engagement, 2) deployment in real-world settings, and 3) clinical translation

    AI and Non AI Assessments for Dementia

    Full text link
    Current progress in the artificial intelligence domain has led to the development of various types of AI-powered dementia assessments, which can be employed to identify patients at the early stage of dementia. It can revolutionize the dementia care settings. It is essential that the medical community be aware of various AI assessments and choose them considering their degrees of validity, efficiency, practicality, reliability, and accuracy concerning the early identification of patients with dementia (PwD). On the other hand, AI developers should be informed about various non-AI assessments as well as recently developed AI assessments. Thus, this paper, which can be readable by both clinicians and AI engineers, fills the gap in the literature in explaining the existing solutions for the recognition of dementia to clinicians, as well as the techniques used and the most widespread dementia datasets to AI engineers. It follows a review of papers on AI and non-AI assessments for dementia to provide valuable information about various dementia assessments for both the AI and medical communities. The discussion and conclusion highlight the most prominent research directions and the maturity of existing solutions.Comment: 49 page

    An avatar-based system for identifying individuals likely to develop dementia

    Get PDF
    This paper presents work on developing an automatic dementia screening test based on patients’ ability to interact and communicate — a highly cognitively demanding process where early signs of dementia can often be detected. Such a test would help general practitioners, with no specialist knowledge, make better diagnostic decisions as current tests lack specificity and sensitivity. We investigate the feasibility of basing the test on conversations between a ‘talking head’ (avatar) and a patient and we present a system for analysing such conversations for signs of dementia in the patient’s speech and language. Previously we proposed a semi-automatic system that transcribed conversations between patients and neurologists and extracted conversation analysis style features in order to differentiate between patients with progressive neurodegenerative dementia (ND) and functional memory disorders (FMD). Determining who talks when in the conversations was performed manually. In this study, we investigate a fully automatic system including speaker diarisation, and the use of additional acoustic and lexical features. Initial results from a pilot study are presented which shows that the avatar conversations can successfully classify ND/FMD with around 91% accuracy, which is in line with previous results for conversations that were led by a neurologist
    • …
    corecore