3 research outputs found

    Understanding Forearm Muscle Coordination in Children

    Get PDF
    A combination of surface electromyography (EMG) and pattern recognition algorithms have led to improvements in the functionality of upper limb prosthetics. This method of control relies on user\u27s ability to repeatedly generate consistent muscle contractions. Research in EMG based control of prosthesis has mainly utilized adult subjects who have fully developed neuromuscular control. Little is known about children\u27s ability to generate consistent EMG signals necessary to control artificial limbs with multiple degrees of freedom. To address this gap, two experiments were designed to validate and benchmark an experimental protocol that quantifies the ability to coordinate forearm muscle contractions in able-bodied children across adolescent ages. Able-bodied, healthy adults (n = 8) and children (n = 9) participated in the first experiment that aimed to measure the subject\u27s ability to produce distinguishable EMG signals. Each subject performed 8 repetitions of 16 different hand/wrist movements. We quantify the number of movement types that can be classified by Support Vector Machine with \u3e 90% accuracy. Additional adults (n=8) and children (n=12) were recruited for the second experiment which measured the subjects\u27 ability to control the position of a virtual cursor on a 1-DoF slide using proportional EMG control under three different gain levels. We demonstrated that children had a smaller number of highly independent movements than adults did, due to higher variability. Furthermore, we found that children had higher failure rates and slower average target acquisitions due to increased time-to-target and follow-up correction time. We also found significant correlation between forearm circumference/age and performance. The results of this study provide novel insights into the technical and empirical basis to better understand neuromuscular development in pediatric upper-limb amputees

    Natural control capabilities of robotic hands by hand amputated subjects

    No full text
    People with transradial hand amputations who own a myoelectric prosthesis currently have some control capabilities via sEMG. However, the control systems are still limited and not natural. The Ninapro project is aiming at helping the scientific community to overcome these limits through the creation of publicly available electromyography data sources to develop and test machine learning algorithms. In this paper we describe the movement classification results gained from three subjects with an homogeneous level of amputation, and we compare them with the results of 40 intact subjects. The number of considered subjects can seem small at first sight, but it is not considering the literature of the field (which has to face the difficulty of recruiting trans-radial hand amputated subjects). The classification is performed with four different classifiers and the obtained balanced classification rates are up to 58.6% on 50 movements, which is an excellent result compared to the current literature. Successively, for each subject we find a subset of up to 9 highly independent movements, (defined as movements that can be distinguished with more than 90% accuracy), which is a deeply innovative step in literature. The natural control of a robotic hand in so many movements could lead to an immediate progress in robotic hand prosthetics and it could deeply change the quality of life of amputated subjects

    Natural control capabilities of robotic hands by hand amputated subjects

    No full text
    People with transradial hand amputations who own a myoelectric prosthesis currently have some control capabilities via sEMG. However, the control systems are still limited and not natural. The Ninapro project is aiming at helping the scientific community to overcome these limits through the creation of publicly available electromyography data sources to develop and test machine learning algorithms. In this paper we describe the movement classification results gained from three subjects with an homogeneous level of amputation, and we compare them with the results of 40 intact subjects. The number of considered subjects can seem small at first sight, but it is not considering the literature of the field (which has to face the difficulty of recruiting trans-radial hand amputated subjects). The classification is performed with four different classifiers and the obtained balanced classification rates are up to 58.6% on 50 movements, which is an excellent result compared to the current literature. Successively, for each subject we find a subset of up to 9 highly independent movements, (defined as movements that can be distinguished with more than 90% accuracy), which is a deeply innovative step in literature. The natural control of a robotic hand in so many movements could lead to an immediate progress in robotic hand prosthetics and it could deeply change the quality of life of amputated subjects. © 2014 IEEE
    corecore