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ABSTRACT 

A combination of surface electromyography (EMG) and pattern recognition algorithms have led 

to improvements in the functionality of upper limb prosthetics. This method of control relies on 

user’s ability to repeatedly generate consistent muscle contractions. Research in EMG based 

control of prosthesis has mainly utilized adult subjects who have fully developed neuromuscular 

control. Little is known about children’s ability to generate consistent EMG signals necessary to 

control artificial limbs with multiple degrees of freedom. To address this gap, two experiments 

were designed to validate and benchmark an experimental protocol that quantifies the ability to 

coordinate forearm muscle contractions in able-bodied children across adolescent ages. Able-

bodied, healthy adults (n = 8) and children (n = 9) participated in the first experiment that aimed 

to measure the subject’s ability to produce distinguishable EMG signals. Each subject performed 

8 repetitions of 16 different hand/wrist movements. We quantify the number of movement types 

that can be classified by Support Vector Machine with >90% accuracy. Additional adults (n=8) 

and children (n=12) were recruited for the second experiment which measured the subjects’ 

ability to control the position of a virtual cursor on a 1-DoF slide using proportional EMG 

control under three different gain levels. We demonstrated that children had a smaller number of 

highly independent movements than adults did, due to higher variability. Furthermore, we found 

that children had higher failure rates and slower average target acquisitions due to increased 

time-to-target and follow-up correction time. We also found significant correlation between 

forearm circumference/age and performance. The results of this study provide novel insights into 

the technical and empirical basis to better understand neuromuscular development in pediatric 

upper-limb amputees. 
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CHAPTER ONE: INTRODUCTION 

Background 

After the amputation of a limb, a person will have to adapt to a drastic change in their 

ability to accomplish daily living tasks. Using electromyography (EMG) signals from residual 

limbs to control a prosthesis can allow for improvements in autonomy for these individuals. 

There is an estimated 48,000 upper limb amputees that are under the age of 21 in the US [1]. 

About 2/3s of pediatric limb deficiencies are due to congenital causes [2]. Early adoption of a 

myoelectric controlled prosthetic device has been shown to increase acceptance rate of the 

device [3]. Prosthetic devices for children are often limited to simplistic mechatronic systems 

due to considerations of cost and weight [2]. In contrast, advanced prosthetic devices for adults 

are able to support multiple degrees of freedom (DoF) and increased functionality, however, rely 

on the user’s ability to generate complex muscle contractions in order to perform efficiently. 

Some studies have shown that congenital amputees have more difficulty producing 

distinguishable EMG patterns [4]–[6]. Studies have also found differences in the neural structure 

of the motor cortex between congenital and traumatic amputees [7]. It is unknown whether 

children with congenital or early acquired limb reduction are able to adapt to using the more 

advanced prosthetic device upon entering adulthood as most of the studies previously cited have 

only examined adults patients and control subjects with fully developed neuromuscular systems. 

Very little data has been produced on the neuromuscular control abilities of a child amputee or 

on possible rehabilitation programs that could improve control abilities for use with adult 

prosthetic devices. In order to address this gap in knowledge, this paper aims to establish and 

validate an experimental protocol that quantifies that ability to coordinate forearm muscle 



2 

 

contraction in able-bodied children across adolescent ages. The two experiments are designed to 

evaluate the subject’s myoelectric control abilities with regard to two types of prosthetic control 

methods: pattern recognition (PR) and simultaneous proportional control.  

PR control leverages a classification algorithm that learns from a labeled “training” data 

set using a feature vector that condenses some type of characteristics of the signal in order to 

distinguish between different output classes. The first experiment will test the user’s ability to 

produce distinguishable muscle patterns by performing a series of different hand/wrist movement 

combinations. The EMG data will then be post-processed and used to train a classifier off-line. 

The subject’s performance will be measured based on the number of movements achieved with a 

minimum accuracy of 90%. The PR control method is popular it allows for a wider range of 

functional hand movements to be achieved; however, PR control is limited to one DoF.  

In contrast, simultaneous proportional control which has been recently developed, allows 

for multi-DoF control signals. Using this control method, the user must have the ability to 

control and scale the magnitude of the muscle activations. The second experiment will assess the 

subject’s ability through a simple target acquisition task. This work will provide the technical 

and empirical basis to better understand neuromuscular development in pediatric upper-limb 

amputees. Furthermore, it will inform future studies investigating plasticity of neural 

mechanisms dictating sensorimotor learning in children, therefore potentially improving the 

management of pediatric prosthetics/orthotics and rehabilitation protocols. 
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Hypothesis 

The purpose of this study was to quantify able- bodied children’s ability to produce 

adequate EMG signals for control. We hypothesize the children group will have a smaller 

number of highly independent movements, and there is a correlation between age and 

classification accuracy. We hypothesize that the children group has on average worse 

performance with simultaneous proportional control measured by these three metrics, and that 

performance is positively correlated with age. 
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CHAPTER TWO: LITERATURE REVIEW 

Electromyography 

 In order to produce any type of body movement, the brain must send an electrical signal 

to the target muscles via the nervous system. This electrical signal sets off a biochemical 

pathway that changes the voltage potential of the cell membrane and also causes a physical 

contraction of the tissue. Larger muscle contraction forces correspond with higher levels of 

electrical activity [8]. Electromyography is a technique that measures the electrical activity 

generated during muscle contraction by measuring differences in voltages via electrodes. A 

minimum of two electrodes are needed; one at the target muscle, another at a ground location 

usually near the wrist. This technique can be scaled to measure multiple sites concurrently. There 

are two main methods of electrode placement for collecting EMG signals: Surface contact and 

intramuscular contact. In surface EMG, the electrodes are placed on the surface of the skin, 

above the muscle of interest. This method is more common for prosthetic control as it is non-

invasive however several important disadvantages to consider. The first one is signal cross talk 

which occurs when activity from one or more muscles contribute to the recorded signal. For 

example, an electrode that is placed over a muscle that is not currently active may still record 

electrical activity from neighboring muscles. A high signal-to-noise ratio is desirable to ensure 

high fidelity signals. This issue is more prevalent in children due to the smaller forearm 

circumference sizes, leading to smaller distances between equally spaced electrodes. In the 

intramuscular approach, a needle is used to attach the electrode at the specific muscle with high 

precision. This method allows for a higher fidelity signal to be acquired but is used more often in 

a clinical setting for diagnostic purposes due to the invasive nature [9].  
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EMG Site Selection 

 Electromyography has been a popular tool for its diagnostic and biomedical applications, 

particularly for its ability to generate bio-control signals. By using multiple EMG sites and signal 

processing techniques, it is possible to represent the muscle contractions into distinct high 

dimensional data objects and extract the user’s motor intent. Several studies have shown that an 

increase in the number of EMG channels improves classification accuracy for trans-radial 

amputees but has diminishing returns [8]. Being able to accurately interpret the user’s motor 

intent is vital for any advanced artificial prosthetic system to be successful for use in daily life 

activities. The placement of the electrode is important and must be located close to the 

anatomical source. Able-bodied adults are able to produce high fidelity signals however, after an 

amputation, the muscles are missing, and the control signals are harder to generate. Higher levels 

of amputations, such as shoulder disarticulation, correspond with a higher degree of difficulty in 

generate those finer muscle contractions needed for hand and wrist movements. The abilities of 

EMG signal generation in amputee differs between age at amputation (child vs adult) as well as 

cause (traumatic vs congenital). Electrodes are usually placed on the forearm of the subject [6]. 

Muscle Coactivation 

 Muscle coactivation is the simultaneous activation of opposing muscle groups around a 

joint. This muscle coactivation provides stability to the surrounding joint. There are many 

indices that attempt to measure levels of coactivation but one of the more common methods is 

simply a ratio between the antagonistic and agonistic muscle activations [10]. 
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Neuromuscular Control in Children 

 From birth until late adolescence, children are in a constant stage of development that 

involves attempted mastery over daily motor functions, from learning how to maintain balance 

during their first steps to developing the hand eye coordination needed to strike a baseball with a 

bat. Several studies have aimed to quantify children’s performance in motor tasks using a 

standardized test known as the Zurich Neuromotor Assessment. This test was used to assess 

differences in performance in children between several factors such as gender, age and 

handedness [11]. The findings showed that younger children performed slower than older 

children and that there was high variability within age groups. Additionally, the complexity of 

the task correlated with an increase in the age in which performance for that task reached a 

plateau. Researchers also found that younger children produced more associated movements 

which are defined as involuntary movements of body parts that are not actively being used 

during the task [11]. Yet other studies have indicated that there are several neuromotor 

capabilities that are not yet fully developed at the time of adolescence such as interlimb 

coordination which also explains a higher amount of associated movements [12]. There is some 

evidence to support a regression in motor skill around 10-12 years old [11], [13], [14]. There are 

also cognitive factors to consider. 

Pattern Recognition Control 

Pattern Recognition (PR) is a common method used in myoelectric control. PR can be 

used to classify muscle contraction patterns into discrete functional classes which can then be 

used to control an end-use device. There are many different types of classification algorithms 
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that can be used but all follow the common stages of signal processing which includes data 

preprocessing, data windowing, feature extraction, and classification. The EMG signals may be 

subject to preprocessing to remove unwanted interference; the most common sources are power 

line harmonics and motion artifact due to electrode movement. One disadvantage of this method 

is that the terminal device always moves at a fixed speed [8]. A critical factor for a successful 

myoelectric control system is the ability to ensure high classification accuracy as 

misclassification can lead to adverse outcomes such as unwanted movements or completely 

failing a task. Our protocol was initially validated using EMG data from the publicly available 

EMG database (Ninapro), to be used in off-line classification.  

Classifiers & Feature Selection 

Many different classification algorithms have been used for myoelectric PR control such 

as linear discrimination analysis (LDA) [15], random forest [16], support vector machines 

(SVM) [17], and convolutional neural networks [18]. All approaches to EMG pattern recognition 

have the fundamental processing stages described earlier. For this study, we decided to examine 

two classifiers: LDA and SVM. LDA is a popular choice for data classification and 

dimensionality reduction due to its computational simplicity and comparable performance to 

other classifiers [9]. This method works by finding a linear combination of features that separate 

the given data into two or more classes. It is similar to Principal Component Analysis (PCA) 

which also seeks to explain the variance in the data however the biggest distinction being that 

PCA does not take into consideration the differences between classes. LDA assumes that the data 

is normally distributed.  
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On the other hand, Support vector machines do not make any assumptions about the data 

and therefore more flexible. SVM works by mapping the original input space into a higher 

dimensional space and optimizes the hyperplane that separates the classes. This hyperplane is 

defined using the class data points that are farther away from the center of the group in order to 

create soft margins which are used to classify new data points [19]. SVM also uses mathematical 

functions that define a kernel function. SVM was initially meant for binary classification 

however several adaptations exist that allows for multi-class classification such as one-vs-all or 

one-vs-one. Both LDA and SVM can provide classification accuracies higher than 90% however 

SVM generally outperforms LDA [20]. 

In order make the raw EMG signal useable for classification, a feature-extraction stage is 

used to increase the information density of the EMG signals. Ideally, the necessary information 

regarding contraction discrimination should be kept while other irrelevant information is 

removed [21]. Three common features used in adult prosthetic research are root mean square 

(RMS), waveform length, and histogram [22]. A combination of features has been found to 

provide high classification accuracies for certain classifiers [23]. A summary of the commonly 

used features is provided in the following table. 
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Table 1:Common Feature Descriptions 

 

Simultaneous Proportional Control 

 While PR control has been shown to achieve high classification accuracies, it is difficult 

to achieve simultaneous control of multiple DoFs (e.g. wrist and finger movements) with discrete 

classes without also increasing the necessary training. Discrete classes also require motor 

planning of sequential movements making it difficult for the user to achieve fluid-like motion. 

Recent research has strived to develop a continuous representation of the user’s intent in order to 

achieve both simultaneous and proportional control. Jiang et al [24] demonstrated that utilizing a 

method based on nonnegative matrix factorization, it was possible to extract simultaneous 

multidimensional control signals.  

Fitt’s Law 

Fitt’s Law is a model of human performance based on information theory and is often 

used in virtual environments. Fitt’s Law states all human movements convey a certain amount of 

Feature Definition (per channel) 

Root Mean Square (RMS) 

𝑥 =  
1

𝑇
 𝑥𝑡

2
𝑇

𝑡=1
 

Waveform Length (WL) 
𝑥 =   𝑥𝑡 − 𝑥𝑡+1 

𝑇−1

𝑡=1
 

Histogram (HIST) 𝑥 1:𝐵 = ℎ𝑖𝑠𝑡(𝑥𝑡+1,𝐵) 

Marginal Discrete Wavelet Transform 

(mDWT) 

𝜓𝑙 ,𝜏(𝑡) = 2−
𝑚
2𝜓(2−1𝑡 − 𝜏) 
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information over time limited only by the control system. This law also states that there is a 

trade-off between speed and accuracy. The difficulty of a target acquisition task is defined as the 

amount of time elapsed in moving cursor to a target is a function of target distance and target 

width. The Fitt’s Law of index of difficultly (ID) is measured in bits and represented in the 

following equation, where D is the target distance and W is the target width. 

𝐼𝐷 = 𝑙𝑜𝑔2(
2𝐷

𝑊
) 

Another important metric is called throughput (TP) which represents the average information 

generated by a series of movements and is calculated as the average information per movement 

divided by the movement time (MT). 

𝑇𝑃 =
𝐼𝐷

𝑀𝑇
 

The metrics provided by Fitt’s Laws have been shown to be sufficient for evaluating EMG 

control systems using target aquation tests.  

Non-negative Matrix Factorization and Muscle Synergies 

Non-negative matrix factorization is a method that factorizes a non-negative input matrix 

V into two matrices, W and H. Generally, the cost function used in non-negative matrix 

factorization is non analytical and thus must be approximated numerically. This method reduces 

the dimensionality of the feature space and is able to represent non-negative data quite well [25], 

making it a great tool for extract muscle synergies in EMG data. Under the muscle synergy 

framework, it is useful to think of W as a n by k matrix that represents k synergies and n number 

of electrodes. Additionally, H is k by T matrix that represents the synergy activation coefficients 

for T samples. A higher number of k synergies corresponds with a more accurate approximation 
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of V. There are many methods that can be used to determine the minimum number of k synergies 

needed to explain the majority of variance in the data. In this study, the ‘variance accounted for’ 

(VAF) is defined in the following equation, where SSE is the sum of squared differences 

between the approximated and exact EMG data and SST is the sum of squared original EMG 

data.  

𝑉𝐴𝐹 = 100 ∗ (1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
) 

In order to avoid settling at a local minimum, the NMF algorithm must be applied multiple times. 

Direct subject to subject comparison of muscle synergies is possible if the electrodes are placed 

at precise anatomical locations [26]–[28]. This method has been commonly used in studies that 

examine muscle synergies [29]–[31] 

Evaluation of Control Systems 

 PR control systems are commonly assessed offline which does provide useful 

information but can lack details about how the system would perform in real time. Furthermore, 

classification accuracy cannot be used to evaluate non-PR control methods. Virtual environments 

are used in place of existing functional tests as they are more adequate for objective evaluations 

[32]. This also eliminates the need for an actual prosthetic device. Several studies have used 

virtual tasks to quantify performance, showing that differences can exist between offline and 

online evaluations [33]. The Target Achievement Control (TAC) test is the model that will be the 

basis for the second experiment and is based on Fitts’ law for human motor control [34], [35]. 

This target acquisition test was adapted for 1D target task. For actual prosthetic device 
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performance, the best evaluation metric involves direct control of the device to accomplish daily 

living tasks. These functional tasks are more representative of actual performance [35]. 
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CHAPTER THREE: METHODOLOGY 

Subjects 

Eight healthy adults (5 males, 3 females, 29±8.3 years) and nine healthy children (4 

males, 5 females, 8.4±2.5 years) successfully completed the first experimental procedure. Eight 

healthy adults (4 males, 4 females, 28±7.5) and thirteen healthy children (8 males, 5 

females,9.2±2.3) where recruited for the second experimental procedure. Two subjects from the 

children’s group were not able to successfully complete the procedure and the resulting data was 

excluded from analysis. This research was approved by the University of Central Florida. 

 

Table 2: Subject Characteristics From Experiment 1 

Subject 
ID 

Gender Age Handedness arm 
length 
(cm) 

forearm 
circumference 
(cm) 

Ht 
(cm) 

Wt 
(kg) 

Completion 

A1 m 27 r 28 29 182 80 y 

A2 m 37 r 26 29 184 95 y 

A3 m 37 r 30 29 182 107 y 

A4 m 20 r 28 29 177 80 y 

A5 f 20 r 25 21 165 54 y 

A6 m 22 r 29 27 183 79 y 

A7 f 29 r 25 23.25 160 54.4 y 

A8 f 41 r 22.5 22.75 63 49.9 y          

C1 f 10 r 22 18 145 24.94 y 

C2 f 14 r 24.5 23.5 157.5 56.24 y 

C3 m 7 r 18 17.5 131 24.9 y 

C4 m 6 r 19.5 21 124.5 32.6 y 

C5 f 9 r 18 20 134 31.9 y 

C6 f 9 r 21 18.5 143 32 y 

C7 f 7 r 19.5 20.5 133 23 y 

C8 m 8 r 20 20 142 28 y 

C9 m 6 r 19 18 131 25 y 
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Table 3: Subject Characteristics From Experiment 2 

Subject 
ID 

Gender Age Handedness arm 
length 
(cm) 

forearm 
circumference 
(cm) 

Ht 
(cm) 

Wt 
(kg) 

Completion 

A1 m 27 r 28 29 182 80 y 

A2 m 37 r 26 29 184 95 y 

A3 f 29 r 25 23.25 160 54.4 y 

A4 m 22 l 29 27 183 79 y 

A5 m 21 r 26.5 27.5 182 91 y 

A6 f 41 r 22.5 22.75 63 49.9 y 

A7 f 21 r 25 21 165 54 y 

A8 f 26 r 23 23.5 162 65 y          

C1 m 13 r 24 23 163 48 y 

C2 f 11 r 21 23 155 52 y 

C3 m 7 l 18 21.5 126 27 y 

C4 m 7 r 21 19.5 137 29 y 

C5 m 10 r 20 20 151 36 y 

C6 f 12 r 24 29 163 64 n 

C7 m 8 r 19 21 123 30 y 

C8 m 8 r 18 21 131 32 n 

C9 f 7 r 17 20 123 27 y 

C10 m 6 r 17 18 121 26 y 

C11 f 9 r 20 18.5 130 24 y 

C12 f 12 r 25.5 23.5 160 49 y 

C13 m 9 r 22 17.5 122 41 y 

 

Equipment Set Up 

The same equipment set up was used in both experimental protocols. Electrode 

placement was selected based on the literature review. Eight sEMG electrodes (Trigno Quatro, 

Delsys Inc) were placed equidistant radially around the thickest part of the subjects dominant 

forearm. The electrode placement was mirrored between right and left handed subjects to provide 

consistency during data analysis. The sampling rate of the sEMG was 2kHz, using 2 sets of 

Delsys Trigno Quattro sensors (4 mini electrodes each). Data acquisition and experimental 
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protocol was developed using the LabVIEW software. PR algorithms require sizeable window 

sizes in order to extract valuable data from the features. A window size of 250 ms was selected 

as this has been shown to provide an acceptable tradeoff between classification accuracy and 

time. The feature selected was root mean square (RMS) which has been shown to be a popular 

feature in adult prosthesis studies.  

 

Figure 1: Picture of Electrode Setup 
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Figure 2: Delsys EMG Sensors and Base 

 

Experimental Procedure 1 

Eight healthy adults and nine healthy children successfully completed this experimental 

procedure. Parental informed consent was acquired for each child participant. During data 

acquisition, participants were asked to mimic the hand-wrist movement displayed on a monitor, 

using their dominant hand. The subject was briefly coached before each movement on how to 

properly execute the movement. The experiment included 8 repetitions of 16 different hand-wrist 

movements. Each repetition was held for 5 s with a rest period of 2 s in between repetitions, with 

short breaks between movements to alleviate muscle fatigue as needed. The 16 movement were 

selected from commonly analyzed movements in current EMG research as describe in Table 3. 
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Table 4: Movement Summary 

Movements 

1.closed fist 7.wrist supination 13.wrist supination w/closed fist 

2.extend all fingers 8.wrist pronation 14.wrist pronation w/closed fist 

3.wrist flexion 9.wrist flexion w/closed fist 15.wrist flexion & supination 

4.wrist extension 10.wrist extension w/ closed first 16.wrist flexion & pronation 

5.wrist abduction 11.wrist abduction w/ closed fist 
 

6.wrist adduction 12.wrist adduction w/closed fist 
 

Experimental Procedure 2 

Subjects were tasked using their wrist extension/flexion to control and move an on-screen 

cursor to a random target on 1-dimensional slide, as quickly as possible as shown in the 

following Figure 3. The target had a fixed width of 0.5 units. 

 

Figure 3:Slider Task 

This experiment included a calibration phase followed by the testing phase. During 

calibration phase, 15 seconds of EMG data associated with repetitive wrist flexion/extension 

movement is acquired. Using the MATLAB function, nnmf, where the first input is the EMG 

data and the second input is 2 because we are interested in the matrix coefficients that separate 

the into raw EMG signal into two control signals. Because the first set of coefficients could 

correspond with either extension or flexion movement, it is sometimes necessary to invert the 

control signal so that from a right-handed perspective, extension corresponds with cursor 
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movement to the right and flexion corresponds with moving the cursor to the left (reversed for 

left-handed subjects). After the coefficients are acquired and applied to the signal, the subject is 

asked to try to control a sample cursor and inversion of the control signal is applied as necessary. 

In order to reduce unintended drift in the cursor movement, the subject is asked to assume a rest 

position with minimal EMG activity. A resting threshold that is roughly 50% higher than the 

average resting EMG amplitude for each channel is established. EMG signals below this 

threshold will not contribute to the movement of the cursor. If the average resting EMG 

amplitude was around 0.1, recalibration was suggested. In the testing phase, the test variable 

consisted of 3 different gain settings (low, medium, high). Each gain setting had 3 runs 

consisting of 20 targets each. If the target was not reached within 10 s, it was counted as a 

failure. The gains were tested in two different orders: 1. Low, medium, high, high medium, low 

and 2. High, medium, low, low, medium, high. Each subject was randomly assigned one of these 

orders in order to make sure that there was no learning bias in the final data. Performance was 

measured through several common metrics used to evaluate subject performance using 

proportional control systems as described in Table 4.  

Table 5: Metrics Summary 

Metric Description 

Completion Throughput The time needed to complete target acquisition normalized by 
the target’s index of difficulty (ID) using Fitts’ Law 

First Touch Throughput The time needed to first reach a target normalized by the 
target’s ID using Fitts’ Law 

Adjustment Time The amount of time necessary to complete target acquisition 
after the first moment the cursor is within target range. 

Completion Rate The percentage of targets reached within the allowed time 
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Data Analysis 

EMG Signal Processing 

The raw EMG signals collected from each movement repetition are processed using 

MATLAB. The EMG signal is zero-meaned and rectified and then passed through a zero phase 

digital filter using the filtfilt function and the transfer function coefficients of a 4-th order 

Butterworth filter with normalized cutoff frequency 0.01 Hz. In order to decrease variability in 

the signal and increase classification accuracy of the algorithm, the portions of the EMG signal 

associated with muscle contraction ramp-up and periods of inactivity were removed. 

Additionally, samples that lied 3 standard deviations above the mean were removed. The 

remaining EMG data was then partitioned further into windows consisting of 80 samples each 

and the RMS feature was calculated for each window. 

Highly Independent Movements 

Data from repetitions 1,3,4,6,8 were used to train the SVM model while data from 

repetitions 2,5, and 7 were used for testing. The SVM model is based off of a learner template 

with a gaussian kernel function and standardization set to true. Standardization is used to center 

and scale each column of the input data by the column mean and standard deviation. After 

training and testing, a confusion matrix was generated with all the movements and their error 

rates. The movement with the lowest accuracy was removed from the training and testing 

datasets and the SVM model was retrained with data from the remaining movements. This 

process was repeated until all remaining movements had a minimum classification accuracy of 

90%. After the algorithm classifies the data for the first time, the movement with the lowest 

accuracy is removed and the algorithm is retrained using only the remaining movements. This 
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process is repeated until all remaining movements have a minimum classification accuracy of 

90%. The number of HIMs gives an idea on the number of movements that could be generated 

using a prosthetic hand for that specific user with minimal training [26].  

Dimensionality Analysis 

 The processed EMG data for each movement is partitioned into windows consisting of 

250 samples and are appended to a matrix that contains the data from all movements. Each of the 

8 channels are then normalized by dividing by the standard deviation of each column. The data is 

then randomly separated into a training and validation set (80% and 20% respectively). Using the 

training set, the nnmf algorithm is used to produce W and H matrices. The variance accounted 

for as defined earlier (See Literature Review) is calculated both globally and locally (per EMG 

channel). This procedure is repeated for k synergies ranging from 1 to 6 in order to find the 

smallest k that results in a minimum global VAF of 95% and local VAF of 85%. The nnmf 

algorithm is repeated 20 times for each k synergy in order to minimize the chance of converging 

to a local minimum. Once the average minimum k synergies are found, the synergy weights will 

be graphed on a polar plot. Figure 4 shows the orientation of the polar plot (from the right-hand 

perspective) where flexion and extension correspond with 0 and 180 degrees respectively. 

Similarly, abduction and adduction correspond with 90 and 270 degrees respectively. Because 

electrode placements are mirrored in left-handed subjects, these four movements will still 

correspond to the same polar directions. 
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Figure 4: Polar Plot Orientation 

Statistics 

A simple linear regression was used to determine if there was a correlation between the 

number of HIMs and subject’s age. The failure rate was calculated for each subject and a 

correlation between age was conducted. If the subject had a greater than 50% failure rate, the 

data was considered unusable. From the children’s group, the data from subject 6 and 8 was 

excluded. The successful trails were used to calculate the parameters shown in the following 

Table. Fitt’s law was used to determine the difficulty index of each target. A two-way mixed 

ANOVA test was conducted for each performance metric. A two tailed paired test was further 

applied if interaction between factors was significant.  
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CHAPTER FOUR: FINDINGS AND DISCCUSSION 

Experiment 1 Results 

As stated in the previous sections, forearm circumference is an important factor in 

prosthesis control. Subject 4’s results were not included as the exhibited loss of attention to the 

task while near the end of the experiment, resulting in only one movement being classified as 

highly independent. This result was excluded as it does not have any practical implications as 

any random movement could achieve high classification accuracy if that movement was the only 

one being trained. First, we began by identifying a simple correlation between forearm 

circumference and the subject’s age as shown in Figure 5. As expected, a significant linear 

relationship was found (R2=0.51, p=0.038).  

 

Figure 5: Correlation Between Child’s Age and Forearm Circumference 
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not continue to increase with age. A stronger linear relationship (R2.=0.576, p=0.002) could be 

achieved by only examining subjects below the age of 25 years.  

As hypothesized, children in general (t = 0.045) achieved fewer HIMs (mean: 5.625 ± 

3.54) than adults (mean: 8.8±1.7). Figure 6 shows the correlation between child subject’s age and 

the number of HIMs (p = 0.05345). Here it is important to discussion the distinction between the 

way HIMs are generated in this study as opposed to previous studies [36]. While HIMs are 

generally characterized by high classification accuracy (>90%), previous studies created 

hierarchical cluster trees using the Mahalanobis distances of each movement to make statistically 

meaningful separation between movements. In our study, we took a more practical approach by 

defining HIMs around the classification algorithm being used (in this case SVM), which gives a 

better idea on how a child might perform using a prothesis with this control method. Future 

studies should be conducted to measure which specific movements are the most separable within 

children, which can help guide training programs.  

 

Figure 6: Correlation Between HIMs and Child’s Age 
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Cluster analysis showed that children subjects had higher within cluster sum of squares than 

adults.  

Additionally, we investigated the relationship between children’s forearm circumference 

and the number of HIMs generated. Figure 7 shows a linear correlation between the two factors 

however this result was not found to be significant (p = 0.11). There are many factors that can 

cause a large variation in forearm circumference within children such as nutrition, genetics, 

physical fitness, etc. A larger sample size with a wider range of adolescent ages is suggested in 

order to provide a more definitive answer to whether a correlation exists among children.   

 

Figure 7: Correlation Between Forearm Circumference and Number of HIMs 

Studies have shown that in trans-radial amputees, the remaining forearm percentage is an 

important clinical parameter that affects prosthesis usage [22]. The results shown in Figures 6 

and 7 support the assumption that forearm circumference increases as children go through 

normal neuromuscular development stage, and that the offline performance of current pattern 

rely on the user’s ability to generate distinct muscle activation patterns which is correlated with 
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the user’s age. Similar to what other studies have found, we saw high variability within the 

children age group. This could support the idea that classification performance is not solely 

limited by the circumference of the forearm and that children could be trained to achieve better 

performance, although younger children would likely require more training than older children.  

Qualitive observations of subjects’ performance indicated that younger children often had 

difficulty maintaining focus on the task before nearing completion, resulting in higher levels of 

inactivity and variability in the EMG recordings. These findings support the idea that children do 

not reach full development until about the age of puberty or about 14 years of age [11] and also 

suggest that psychological factors must be considered. One subject (9 y.o) performed 

exceptionally well, achieving a total of 11 HIMs, adding support to the findings of high 

variability in performance within age groups. A lower overall number of HIMs indicates that 

children may have some difficultly controlling prosthetic devices designed for adults. We did not 

find a strong correlation in the adult group as they all performed similarly, regardless of age. 

 Using NMF analysis, we found that there was no significant difference (t = 0.78) between 

the average number of minimum synergies to explain the majority of the variance for both adults 

(4±1.07) and children (4.125±0.35). Thus, a total of number of 4 synergies was chosen to 

visualize the groups of electrodes responsible for most of the movements. Figure 8 and 9 shows 

the relationship between the VAF and number of synergies for adults and children respectively.  
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Figure 8:Variance Accounted For Vs Number of Synergies (Adults) 

 

Figure 9:Variance Accounted For Vs Number of Synergies (Children) 
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Even children who had achieved a low number of HIMs showed similar synergy results. Thus, 

using four synergies, the average weights were calculated, and corresponding electrode locations 

were graphed on a polar plot shown in the following figure. Each synergy can be thought of 

corresponding to flexion, extension, abduction and adduction. The fact that there is no difference 

between age groups suggests that children already possess a control space of the same order as 

adults. 

  

  

Figure 10: Synergies-Adults 
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Figure 11: Synergies-Children 

 

Under the assumption of four synergies, the polar plots indicate that there are four very 

distinguishable groups of electrodes contributing to the majority of the variance. Although not 

exact, the synergies have similar locations between adults and children. The four directions 

correspond with the approximate anatomical locations of muscles that are used for extension, 

flexion, abduction, and adduction. One of the common critiques of the muscle synergy 

framework is that it demonstrates limitations of the task as opposed to actual groupings of 

muscle [37]. In other studies, subjects performed over 40 different tasks and the average number 
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of muscle synergies was 6 . Thus, it stands to reason that the synergy results from this 

experiment could be attributed to the reduced number of movements in the task, resulting in less 

overall task complexity. A reduced movement set was selected for this experiment in order to 

accommodate the average attention span of a child as experimentation. Further studies utilizing 

anatomical positioning of electrodes can provide more information on the exact muscles 

involved in each synergy. Knowing each muscle’s contribution to a synergy as well as 

understanding how each muscle contribution changes throughout the development stage of the 

child would be of great benefit for developing training programs for upper limb prosthetic 

control.  

Experiment 2 Results 

In the second experiment, the mean failure rate among children per gain test (15%±5.2%) 

was significantly higher than the adult group (1%±0.5%). For both groups, an increase in gain 

level had a significant (p = 0.001) increase in failure rate.  
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Figure 12: Average Number of Failures per Test 

In order examine learning within subject groups, we compared the completion throughput 

between the first three and last three tests. Figure 13 shows that on average, the completion 

throughput for adults increases through each test with a significant difference between the first 

and second half (t = 0.001). However, children did not show a significant difference in average 

completion throughput between the first and second half (t = 0.12). Therefore, for the following 

metrics reported, only data from the second half is considered as it provides a more accurate 

description of expected performance. 

 

Figure 13: Average Completion Throughput 

The Average Completion Throughput (Figure 14) indicates the information transmission 

rate in order to complete the target acquisition. In evaluating target acquisition performance 

between targets of different distances, completion time is not a sufficient metric as near-by 

targets should have expected completions times less than targets located at greater distances. 

Completion throughput is a metric that scales the completion time with the target distance in 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 1 2 3 4 5 6 7

A
ve

ra
ge

 C
o

m
p

le
ti

o
n

 T
h

ro
u

gh
p

u
t 

(B
it

s/
s)

Test #

Average Completion Throughput Across All gains

adults

children



31 

 

order to achieve a more comparable metric between different targets. Here we observed a 

significant difference in both gain and age factors (p = 0.004 and p = 0.001 respectively) with no 

interaction between factors (p = 0.732). Thus we conducted a post hoc 2-tailed paired T-test and 

found no significant difference between the Medium and High gain for both groups.  

 

Figure 14: Average Completion Throughput Per Gain 

The mean adjustment time between groups is shown in Figure 15. For this metric, it was 

found that a marginally significant interaction between age and gain level existed (p=0.047). 

Thus, 3 two-tailed paired T tests were conducted for each age group (Low Vs Medium, Medium 

Vs High, Low Vs High). Between children subjects, there was significant difference between 

High and Medium gain (t = 0.0027) and High and Low gain (t = 0.0026), with no significant 

difference between Low and Medium (t=0.183). In the adult group, there was a significant 

difference in adjustment time between Low and Medium gain (t = 0.0026) and Low and High 

gain (t=0.0002), with no significant difference between the Medium and High gain (t=0.326). 
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Figure 15: Average Adjustment Time Per Gain 

Although not recorded, it is suspected that children on average had higher levels of co-

contractions which could be quantified by taking the minimum magnitude between the left and 

right control signals. High levels of co-contraction will increase the minimum magnitude 

between these control signals. Co-contractions could also be a reason that the children subjects 

on average had longer adjustment times. 

Comparing the First Touch Throughput in Figure 16, no significant difference between 

age groups was found (p = 0.154), indicating that children had a similar reaction speed to adults 

per gain. Additionally, 2-tailed paired T-tests between gains showed that there was no significant 

difference between Medium and High gains (p = 0.107) but Low was significantly different than 

both Medium and High (p = 0.006, p = 0.007 respectively). 
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Figure 16: Average First Touch Throughput Per Gain 

Due to the significant differences that were detected between some of the gain levels, an 

examination of the relationship between the children’s age and completion throughput between 

each of the three gain levels was conducted, as shown in Figure 17. A significant positive 

correlation was found between age and completion throughput (Low: p=0.007, Medium: 

p=0.026, High: p=0.004).  
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Figure 17:Correlation Between Children’s' Age and Completion Throughput 

Similarly, the relationship between forearm circumference and completion throughput 

was examined in Figure 18. A significant positive correlation was found within the low and 

medium gain levels (p = 0.047 & p = 0.034 respectively) however no significant relationship was 

found when examining the high gain level (p = 0.158). 

 

Figure 18:Correlation Between Forearm Circumference and Completion Throughput 
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Additionally, a significant negative correlation was found between age and adjustment 

time at low and medium gains shown in Figure 19 (Low: p = 0.02, Medium: p = 0.011, High: 

p=0.077). 

 

Figure 19:Correlation Between Children's Age and Adjustment Time 
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Figure 20:Correlation Between Forearm Circumference and Adjustment Time 
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they limited by their neuromuscular development or cognitive function. Regression based control 

may be a better option for children due to similar level of dimensionality with use of a soft 

adaptive hand as independent finger posture is not possible [38]. It’s important to note that 

variability is not just a symptom of noise within the signal. In general, children might have more 

variability in their motor control thus they prefer smaller speed. Because of the high inter-subject 

variability, is very appliable in functional applications to have an automatic gain tuning so that it 

can increase that user’s performance. It is possible to develop an automatic gain updater that 

adjusts the gain in reaction to the extent and frequency that the user exhibits overshot or 

undershoot during target acquisition.  
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CHAPTER FIVE: CONCLUSION 

From our studies, we were able to quantify the EMG performance of children performing 

abstract tasks, using several different metrics, and comparing the results to adults. As 

hypothesized, children performed worse on several metrics such as lower number of HIMs and 

slower completion times. The children did perform similarly to adults in regard to the 

dimensionality of the EMG space for the muscle contractions produced. This suggests that the 

children in this experiment have similar capability of producing distinct muscle contractions 

while performing a range of hand movements, compared to adults. However, the lack of 

consistency during repeated movements led to poor training data and classification accuracy. 

One improvement to the first experimental protocol would be to introduce some form of 

feedback to the user. Visual feedback could provide the user with a sense of their performance so 

that they can perform more consistently. Haptic feedback has been shown to provide enhanced 

control in prosthetic devices [39]. In the protocol validation stage, SVM produced more highly 

independent movements than LDA and was thus selected for the final protocol. Both methods 

resulted in different movement types to be classified as highly independent. A thorough 

investigation into which classifiers and features are best suited for adolescent subjects is 

suggested.  

The lack of learning observed in children during the second experiment suggests that 

children may have difficultly using simultaneous proportional control systems and that longer 

training periods will be required. Adult subjects showed improvement in both adjustment time 

and completion throughput in the second half. The classic tradeoff between speed and accuracy 

must be consider especially for children. Overall, a low to medium sensitivity gain setting is 
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suggested as this resulted in the lowest number of failures and does not sacrifice on overall 

throughput. The fact that children had longer adjustment times and lower number of HIMs 

supports the idea that children struggle at reproducing repeatable EMG control signals. The 

reason that children display more co-contractions than adults could be attributed to the muscle 

mass and the immature neuromuscular control that they possess. Increased EMG crosstalk could 

also be a contributing factor in the observed co-contractions. In target acquisition performance 

tasks, co-contractions were found to increase with smaller target sizes [40]. Studies have shown 

that subjects are able to reduce the amount of co-contractions with enough training time. If co-

contractions could be reduced via physical training or through data processing and filtering, 

performance in both PR and SP methods could be improved. In general, children performed 

worse than adults in utilizing both PR and SP control systems. Further studies should examine if 

it is possible for children to be trained to control prosthetics devices developed for adult users. It 

remains to be known how children would have performed in a 2D or 3D target acquisition test. 

Personal observations and comments from several participants suggest that a more 

visually stimulating graphical interface could help increase the focus of younger children. While 

performing tasks, loss of focus was found to be the biggest source of variability among children. 

It is known that younger children have shorter attention spans than older children and adults 

which contributed to errors in the final results which is why both experiments were designed to 

have an average completion time of 60 mins. The majority of children subjects also indicated 

that they played some type of video game at home. Feedback during the first experiment was 

non-existent as subjects had no indication on how they were doing, while subjects in the second 

experiment received real time visual feedback on the placement of the cursor. Future work and 
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training programs could adapt the protocol to introduce game like features. Additional studies 

could be adapted to examine performance in functional tasks vs abstract tasks. Recently, the 

effect of exercise gaming, or exergaming, has been applied to the rehabilitation of amputee 

patients [41]. A review of studies showed overall, exergaming did improve outcomes and was 

feasible for prosthetic training, however, due to differences in clinical parameters such as 

amputation level, results were varied. Due to all the nuances between individuals that affect 

prosthetic performance, it would be very beneficial to develop prosthetic devices that learn the 

intrinsic characteristics of the individual users instead of having the user learn the prosthetic 

system. The next step would be to quantify the performance of congenital and traumatic limb 

loss adolescent amputees and able-bodied children over a longer training period.  

Overall, this study provided quantitative measures on the performance of able-bodied 

children in controlling modern myoelectric control systems and the results suggest that control 

and rehabilitation programs must be specifically designed for children with these differences in 

mind.  
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APPENDIX: IRB APPROVAL LETTER 
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