4 research outputs found

    An evaluation of asymmetric interfaces for bimanual virtual assembly with haptics

    Get PDF
    Immersive computing technology provides a human–computer interface to support natural human interaction with digital data and models. One application for this technology is product assembly methods planning and validation. This paper presents the results of a user study which explores the effectiveness of various bimanual interaction device configurations for virtual assembly tasks. Participants completed two assembly tasks with two device configurations in five randomized bimanual treatment conditions (within subjects). A Phantom Omni® with and without haptics enabled and a 5DT Data Glove were used. Participant performance, as measured by time to assemble, was the evaluation metric. The results revealed that there was no significant difference in performance between the five treatment conditions. However, half of the participants chose the 5DT Data Glove and the haptic-enabled Phantom Omni® as their preferred device configuration. In addition, qualitative comments support both the preference of haptics during the assembly process and comments confirming Guiard’s kinematic chain model

    MĂ©thode interactive et par l'apprentissage pour la generation de trajectoire en conception du produit

    Get PDF
    The accessibility is an important factor considered in the validation and verification phase of the product design and usually dominates the time and costs in this phase. Defining the accessibility verification as the motion planning problem, the sampling based motion planners gained success in the past fifteen years. However, the performances of them are usually shackled by the narrow passage problem arising when complex assemblies are composed of large number of parts, which often leads to scenes with high obstacle densities. Unfortunately, humans’ manual manipulations in the narrow passage always show much more difficulties due to the limitations of the interactive devices or the cognitive ability. Meanwhile, the challenges of analyzing the end users’ response in the design process promote the integration with the direct participation of designers.In order to accelerate the path planning in the narrow passage and find the path complying with user’s preferences, a novel interactive motion planning method is proposed. In this method, the integration with a random retraction process helps reduce the difficulty of manual manipulations in the complex assembly/disassembly tasks and provide local guidance to the sampling based planners. Then a hypothesis is proposed about the correlation between the topological structure of the scenario and the motion path in the narrow passage. The topological structure refers to the medial axis (2D) and curve skeleton (3D) with branches pruned. The correlation runs in an opposite manner to the sampling based method and provide a new perspective to solve the narrow passage problem. The curve matching method is used to explore this correlation and an interactive motion planning framework that can learn from experience is constructed in this thesis. We highlight the performance of our framework on a challenging problem in 2D, in which a non-convex object passes through a cluttered environment filled with randomly shaped and located non-convex obstacles.L'accessibilitéest un facteur important pris en compte dans la validation et la vérification en phase de conception du produit et augmente généralement le temps et les coûts de cette phase. Ce domaine de recherche a eu un regain d’intérêt ces quinze dernières années avec notamment de nouveaux planificateurs de mouvement. Cependant, les performances de ces méthodes sont généralement très faibles lorsque le problème se caractérise par des passages étroits des assemblages complexes composées d'un grand nombre de pièces. Cela conduit souvent àdes scènes àforte densitéd'obstacles. Malheureusement, les manipulations manuelles des humains dans le passage étroit montrent toujours beaucoup de difficultés en raison des limitations des dispositifs interactifs ou la capacitécognitive. Pendant ce temps, les défis de l'analyse de la réponse finale des utilisateurs dans le processus de conception promeut l'intégration avec la participation directe des concepteurs.Afin d'accélérer la planification dans le passage étroit et trouver le chemin le plus conforme aux préférences de l'utilisateur, une nouvelle méthode de planification de mouvement interactif est proposée. Nous avons soulignéla performance de notre algorithme dans certains scénarios difficiles en 2D et 3D environnement.Ensuite, une hypothèse est proposésur la corrélation entre la structure topologique du scénario et la trajectoire dans le passage étroit. La méthode basée sur les courbures est utilisée pour explorer cette corrélation et un cadre de planification de mouvement interactif qui peut apprendre de l'expérience est construit dans cette thèse. Nous soulignons la performance de notre cadre sur un problème difficile en 2D, dans lequel un objet non-convexe passe à travers un environnement encombrérempli d'obstacles non-convexes de forme aléatoire et situés

    Using proprioception to support menu item selection in virtual reality

    Get PDF
    Dissertation (MIS (Multimedia))--University of Pretoria, 2023.There is an abundance of literature that informs menu system design, specifically for the context of a two-dimensional flat monitor display. These guidelines that are used to inform menu system design used in two-dimensional flat monitor displays were reconsidered to identify criteria that can inform the design of a menu system used in a three-dimensional (3D) virtual environment that makes use of immersive virtual reality technology. Considering the immersive nature of such technologies, it can be hypothesized that proprioception, a sense used to establish awareness of objects and space in a physical environment, can be transferred into the virtual environment to guide menu item selection. Various properties of menu system design were investigated to identify properties that can be used together with proprioception to support menu item selection. Further investigation to understand the usage of proprioception in a 3D virtual environment revealed that spatial awareness and memory needs to be established first. Therefore, criteria that inform the design of menu item selection to be supported by proprioception needed to take this fact into consideration as well. Consequently, a menu system was designed and developed based on the identified criteria to test its feasibility to inform the design of a menu system in a 3D virtual environment that enables users to rely on non-visual senses to guide their selections. The system was designed and developed using commercially available hardware and software to ensure that the findings of this study can be accessible to the general public. The results of this study identified that participants were able to establish spatial awareness and develop familiarity with the 3D virtual environment, therefore enabling them to make use of proprioception, along with their visual senses and haptic feedback, to improve their ability to select menu items. The results also revealed that participants had varying levels of relying on visual guidance for menu item selection and that the varying levels of reliance were based on personal preference.Information ScienceMIS (Multimedia)UnrestrictedFaculty of Engineering, Built Environment and Information TechnologySDG-04:Quality Educatio
    corecore