26 research outputs found

    Natural ZMP trajectories for biped robot reference generation

    Get PDF
    The control of a biped humanoid is a challenging task due to the hard-to-stabilize dynamics. Walking reference trajectory generation is a key problem. Linear Inverted Pendulum Model (LIPM) and Zero Moment Point (ZMP) Criterion based approaches in stable walking reference generation are reported. In these methods, generally, the ZMP reference during a stepping motion is kept fixed in the middle of the supporting foot sole. This kind of reference generation lacks naturalness, in that, the ZMP in the human walk does not stay fixed, but it moves forward under the supporting foot. This paper proposes a reference generation algorithm based on the LIPM and moving support foot ZMP references. The application of Fourier series approximation simplifies the solution and it generates a smooth ZMP reference. A simple inverse kinematics based joint space controller is used for the tests of the developed reference trajectory through full-dynamics 3D simulation. A 12 DOF biped robot model is used in the simulations. Simulation studies suggest that the moving ZMP references are more energy efficient than the ones with fixed ZMP under the supporting foot. The results are promising for implementations

    Simple virtual slip force sensor for walking biped robots

    Get PDF
    This paper presents a novel simple Virtual Slip Force Sensor (VSFS) for a walking biped. Bipeds walking stability is critical and they tend to lose it easily in real environments. Among the significant aspects that affect the stability is the availability of the required friction force which is necessary for the robot not to slip. In this paper we propose the use of the virtual sensor to detect the slip force. The design structure of the VSFS consists of two steps, in the first step it utilizes the measured acceleration of the center of mass (CoM) and the ZMP signals in the simple linear inverted pendulum model (LIPM) to estimate the position of the CoM, and in the second step the Newton law is employed to find the total ground reaction force (GRF) for each leg based on the position of CoM. Then both the estimated force and the measured force from the sensors assembled at the foot are used to detect the slip force. The validity of the proposed estimation method was confirmed by simulations on 3D dynamics model of the humanoid robot SURALP while walking. The results are promising and prove themselves well

    Trajectory generation with natural ZMP references for the biped walking robot SURALP

    Get PDF
    Bipedal locomotion has good obstacle avoidance properties. A robot with human appearance has advantages in human-robot communication. However, walking control is difficult due to the complex robot dynamics involved. Stable reference generation is significant in walking control. The Linear Inverted Pendulum Model (LIPM) and the Zero Moment Point (ZMP) criterion are applied in a number of studies for stable walking reference generation of biped robots. This is the main route of reference generation in this paper too. We employ a natural and continuous ZMP reference trajectory for a stable and human-like walk. The ZMP reference trajectories move forward under the sole of the support foot when the robot body is supported by a single leg. Robot center of mass (CoM) trajectory is obtained from predefined ZMP reference trajectories by Fourier series approximation. We reported simulation results with this algorithm in our previous works. This paper presents the first experimental results. Also the use of a ground push phase before foot take-offs reported in our previous works is tested first time together with our ZMP based reference trajectory. The reference generation strategy is tested via walking experiments on the 29 degrees-of-freedom (DOF) human sized full body humanoid robot SURALP (Sabanci University Robotics Research Laboratory Platform). Experiments indicate that the proposed reference trajectory generation technique is successful

    Biped robot walking control on inclined planes with fuzzy parameter adaptation

    Get PDF
    The bipedal structure is suitable for a robot functioning in the human environment, and assuming assistive roles. However, the bipedal walk is a poses a difficult control problem. Walking on even floor is not satisfactory for the applicability of a humanoid robot. This paper presents a study on bipedal walk on inclined planes. A Zero Moment Point (ZMP) based reference generation technique is employed. The orientation of the upper body is adjusted online by a fuzzy logic system to adapt to different walking surface slopes. This system uses a sampling time larger than the one of the joint space position controllers. A newly defined measure of the oscillatory behavior of the body pitch angle and the average value of the pelvis pitch angle are used as inputs to the fuzzy adaptation system. A 12-degrees-of-freedom (DOF) biped robot model is used in the full-dynamics 3-D simulations. Simulations are carried out on even floor and inclined planes with different slopes. The results indicate that the fuzzy adaptation algorithms presented are successful in enabling the robot to climb slopes of 5.6 degrees (10 percent)

    Humanoid robot walking control on inclined planes

    Get PDF
    The humanoid bipedal structure is suitable for a assitive robot functioning in the human environment. However, the bipedal walk is a difficult control problem. Walking just on even floor is not satisfactory for the applicability of a humanoid robot. This paper presents a study on bipedal walk on inclined planes. A Zero Moment Point (ZMP) based reference generation technique is employed. The orientation of the feet is adjusted online by a fuzzy logic system to adapt to different walking surface slopes. This system uses a sampling time larger than the one of the joint space position controllers. The average value of the body pitch angle is used as the inputs to the fuzzy logic system. A foot pitch orientation compensator implemented independently for the two feet complements the fuzyy controller. A 12-degrees-of-freedom (DOF) biped robot model is used in the full-dynamics 3-D simulations. Simulations are carried out on even floor and inclined planes with different slopes. The results indicate that the control method presented is successful in enabling the robot to climb slopes of 8.5 degrees (15 percent grade)

    Dört bacaklı robotlar için önizlemeli kontrol ile sıfır moment noktası tabanlı yürüme yörüngesi sentezi

    Get PDF
    Bacakları üzerinde hareket eden robotların engel aşma konusunda önemli avantajları söz konusudur. Özellikle dört bacaklı robotların değişken arazi yapıları üzerinde birçok uygulamaları düşünülmektedir. Bu çalışmada, dört bacaklı bir robotun düz zemin üzerinde hızlı yol almasına yönelik tırıs türü ilerleme üzerinde durulmaktadır. Sıfır Moment Noktası (SMN) karalılık kriterine ve Doğrusal Ters Sarkaç Modeli’ne (DTSM) dayalı bir yürüme referansı sentez yöntemi sunulmaktadır. Tırıs ilerleme için bir SMN referans yörüngesi önerilmiş, bu yörüngeden, önizlemeli kontrol yaklaşımı ile Robot Ağırlık Merkezi (RAM) için bir referans yörünge elde edilmiştir. Oluşturulan ağırlık merkezi yörüngesi ters kinematik yöntemi ile bacak eklemlerinin konum referanslarının hesaplanmasında kullanılmıştır. Önerilen referans sentezi yöntemi, 16 serbestlik dereceli bir robot modeli ile üç boyutlu ve tam dinamikli bir simülasyon ortamında denenmiştir. Simülasyon sonuçları sunulan yaklaşımın başarılı olduğunu göstermektedir

    İnsansı robot SURALP için sıfır moment noktası tabanlı referans sentezi ile eğimi değişen yüzeylerde yürüme kontrolü

    Get PDF
    Bir robotun insan gibi iki bacak üzerinde yürümesi ona insanların yaşama ve çalışma ortamlarında karşılaşılan engellerden sakınabilme özelliği sağlayacaktır. İnsan şeklindeki bir robotun insanlar tarafından sosyal bir varlık olarak algılanmasının ve insanlarla işbirliğinde bulunmasının diğer şekildeki robotlara göre daha kolay olacağı düşünülmektedir. Bu görüşler özellikle son 15 yılda insansı robot araştırmalarına ivme kazanmıştır. Bununla birlikte bir insansı robotun çok sayıdaki serbestlik derecesi ve doğrusal olmayan girift dinamiği yürüme kontrolü açısından ciddi zorluklar teşkil etmektedir. Eğimi değişen yüzeyler bu kontrol problemini daha da güçleştirmektedir. İki bacaklı robot hareket kontrolünde kararlı bir yürüme referansının sentezi en az geri beslemeli denge yöntemleri kadar önem taşımaktadır. Doğrusal Ters Sarkaç Modeli (DTSM) ve Sıfır Moment Noktası (SMN) kararlılık kriterine dayanan referans sentezi yöntemlerine literatürde rastlanmaktadır. Sabancı Universitesi İnsansı Robotu SURALP için de DTSM ve SMN tabanlı bir referans sentezi yöntemi geliştirilmiş ve bu yöntemle düz zemin üzerinde elde edilen yürüme deney sonuçları yazarların daha önceki yayınlarında sunulmuştur. Bu bildiri daha önce tasarlanan referans sentez yöntemini özetlemekte ve eğimli yüzeyler üzerinde yürümeye yönelik bir kontrol yöntemini sunmaktadır. SURALP ile daha önce yapılan çalışmalardan farklı olarak eğimi değişen yüzeyler üzerinde yürüme testleri yapılmış, referans sentezi ve kontrol yöntemlerinin bu yüzeyler üzerinde yürümedeki başarımı deneysel olarak incelenmiştir

    Dört bacaklı robotlar için önizleme kontrolü ve sıfır moment noktası esaslı yürüyüş yörüngesi üretimi

    Get PDF
    Robota verilen görevde engel aşımı gerektiğinde bacaklı robotların geri kalan mobil robotlara göre önemli avantajları bulunmaktadır. Bu makalede dört bacaklı robotların düz bir yüzeyde yürüyüşü için bir ölçümleme üretimi yöntemi sunuldu. Bu yaklaşım sıfır moment noktası (SMN) temelli kararlılık ve doğrusal ters sarkaç modeli (DTSM) üzerinedir. Yürüyüş için SMN referans gezingeleri ileri sürülüp oradan önizleme kontorü vasıtasıyla robotun ağırlık merkezi (RAM) referansı için referans gezingeleri elde edildi. Bacak eklemlerinin pozisyonları RAM referans gezingeleri üzerine ters kinematik uygulanarak hesaplandı. Öne sürülen referans gezinge üretimi sentezi, tamamen dinamik 3 boyutlu benzetimle test edildi. Benzetimde 16 serbestlik derecesine (SD) sahip dört bacaklı robot modeli kullanıldı. Benzetim sonuçları, yürüyüş için yapılan referans üretim tekniğinin başarıya ulaştığını gösteriyor

    Center of Pressure Feedback for Controlling the Walking Stability Bipedal Robots using Fuzzy Logic Controller

    Get PDF
    This paper presents a sensor-based stability walk for bipedal robots by using force sensitive resistor (FSR) sensor. To perform walk stability on uneven terrain conditions, FSR sensor is used as feedbacks to evaluate the stability of bipedal robot instead of the center of pressure (CoP). In this work, CoP that was generated from four FSR sensors placed on each foot-pad is used to evaluate the walking stability. The robot CoP position provided an indication of walk stability. The CoP position information was further evaluated with a fuzzy logic controller (FLC) to generate appropriate offset angles to be applied to meet a stable situation. Moreover, in this paper designed a FLC through CoP region's stability and stable compliance control are introduced. Finally, the performances of the proposed methods were verified with 18-degrees of freedom (DOF) kid-size bipedal robot
    corecore