36,435 research outputs found

    Can Computer Algebra be Liberated from its Algebraic Yoke ?

    Full text link
    So far, the scope of computer algebra has been needlessly restricted to exact algebraic methods. Its possible extension to approximate analytical methods is discussed. The entangled roles of functional analysis and symbolic programming, especially the functional and transformational paradigms, are put forward. In the future, algebraic algorithms could constitute the core of extended symbolic manipulation systems including primitives for symbolic approximations.Comment: 8 pages, 2-column presentation, 2 figure

    The role of concurrency in an evolutionary view of programming abstractions

    Full text link
    In this paper we examine how concurrency has been embodied in mainstream programming languages. In particular, we rely on the evolutionary talking borrowed from biology to discuss major historical landmarks and crucial concepts that shaped the development of programming languages. We examine the general development process, occasionally deepening into some language, trying to uncover evolutionary lineages related to specific programming traits. We mainly focus on concurrency, discussing the different abstraction levels involved in present-day concurrent programming and emphasizing the fact that they correspond to different levels of explanation. We then comment on the role of theoretical research on the quest for suitable programming abstractions, recalling the importance of changing the working framework and the way of looking every so often. This paper is not meant to be a survey of modern mainstream programming languages: it would be very incomplete in that sense. It aims instead at pointing out a number of remarks and connect them under an evolutionary perspective, in order to grasp a unifying, but not simplistic, view of the programming languages development process

    Answer-set programming as a new approach to event-sequence testing

    Get PDF
    In many applications, faults are triggered by events that occur in a particular order. Based on the assumption that most bugs are caused by the interaction of a low number of events, Kuhn et al. recently introduced sequence covering arrays (SCAs) as suitable designs for event sequence testing. In practice, directly applying SCAs for testing is often impaired by additional constraints, and SCAs have to be adapted to fit application-specific needs. Modifying precomputed SCAs to account for problem variations can be problematic, if not impossible, and developing dedicated algorithms is costly. In this paper, we propose answer-set programming (ASP), a well-known knowledge-representation formalism from the area of artificial intelligence based on logic programming, as a declarative paradigm for computing SCAs. Our approach allows to concisely state complex coverage criteria in an elaboration tolerant way, i.e., small variations of a problem specification require only small modifications of the ASP representation

    Semantic Source Code Models Using Identifier Embeddings

    Full text link
    The emergence of online open source repositories in the recent years has led to an explosion in the volume of openly available source code, coupled with metadata that relate to a variety of software development activities. As an effect, in line with recent advances in machine learning research, software maintenance activities are switching from symbolic formal methods to data-driven methods. In this context, the rich semantics hidden in source code identifiers provide opportunities for building semantic representations of code which can assist tasks of code search and reuse. To this end, we deliver in the form of pretrained vector space models, distributed code representations for six popular programming languages, namely, Java, Python, PHP, C, C++, and C#. The models are produced using fastText, a state-of-the-art library for learning word representations. Each model is trained on data from a single programming language; the code mined for producing all models amounts to over 13.000 repositories. We indicate dissimilarities between natural language and source code, as well as variations in coding conventions in between the different programming languages we processed. We describe how these heterogeneities guided the data preprocessing decisions we took and the selection of the training parameters in the released models. Finally, we propose potential applications of the models and discuss limitations of the models.Comment: 16th International Conference on Mining Software Repositories (MSR 2019): Data Showcase Trac
    corecore