4,175 research outputs found

    Norm-Establishing and Norm-Following in Autonomous Agency

    Get PDF
    Living agency is subject to a normative dimension (good-bad, adaptive-maladaptive) that is absent from other types of interaction. We review current and historical attempts to naturalize normativity from an organism-centered perspective, identifying two central problems and their solution: (1) How to define the topology of the viability space so as to include a sense of gradation that permits reversible failure, and (2) how to relate both the processes that establish norms and those that result in norm-following behavior. We present a minimal metabolic system that is coupled to a gradient-climbing chemotactic mechanism. Studying the relationship between metabolic dynamics and environmental resource conditions, we identify an emergent viable region and a precarious region where the system tends to die unless environmental conditions change. We introduce the concept of normative field as the change of environmental conditions required to bring the system back to its viable region. Norm-following, or normative action, is defined as the course of behavior whose effect is positively correlated with the normative field. We close with a discussion of the limitations and extensions of our model and some final reflections on the nature of norms and teleology in agency

    \u3ci\u3eDemocracy\u27s Discontent\u3c/i\u3e in a Complex World: Can Avalanches, Sandpiles, and Finches Optimize Michael Sandel\u27s Civic Republican Community?

    Get PDF
    In Democracy\u27s Discontent: America in Search of a Public Philosophy, Michael Sandel looks about him and finds a vast and complex world governed by impersonal institutions and structures, in which discontented, anxious, and frustrated individuals are losing control over the forces that govern their lives, and in which the moral fabric of community is unraveling. His solution is to revitalize the civic strand of freedom found in republican politics and thus equip individuals to govern themselves. Sandel wonders how civic republicanism can exist in today\u27s world. Historically, republicanism has found a home in small, bounded places, which were largely self-sufficient and inhabited by people whose living conditions, education, and commonality enabled them to deliberate about public concerns. His structural answer is to disperse sovereignty both upwards and downwards of the modem nation state into a multiplicity of political communities and social institutions. His normative answer is to infuse substantive moral discourse back into public political debate

    Combining Luhmann and Actor-Network Theory to see Farm Enterprises as Self-organizing Systems

    Get PDF
    From a rural, sociological point of view no social theories have so far been able to grasp the ontological complexity and special character of a farm enterprise as an entity in a really satisfying way. The contention of this paper is that a combination of Luhmann’s theory of social systems and actor-network theory (ANT) of Latour, Callon, and Law offers a new and radical framework for understanding a farm as a self-organizing, heterogeneous system. Luhmann’s theory offers an approach to understand a farm as a self-organizing system (operating in meaning) that must produce and reproduce itself through demarcation from the surrounding world by selection of meaning. The meaning of the system is expressed through the goals, values, and the logic of the farming processes. His theory, however, is less useful when studying the heterogeneous character of a farm as a mixture of biology, sociology, technology, and economy. ANT offers an approach to focus on the heterogeneous network of interactions of human and non-human actors such as knowledge, technology, money, farmland, animals, plants, etc., and as to how these interactions depend on both the quality of the actors and the network context of interaction, but the theory is weak when it comes to explaining the self-organizing character of a farm enterprise

    Combining Luhmann and Actor-Network Theory to see Farm Enterprises as Self-organizing Systems

    Get PDF
    From a rural, sociological point of view no social theories have so far been able to grasp the ontological complexity and special character of a farm enterprise as an entity in a really satisfying way. The contention of this paper is that a combination of Luhmann’s theory of social systems and the actor-network theory (ANT) of Latour, Callon, and Law offers a new and radical framework for understanding a farm as a self-organizing, heterogeneous system. Luhmann’s theory offers an approach to understand a farm as a self-organizing system (operating in meaning) that must produce and reproduce itself through demarcation from the surrounding world by selection of meaning. The meaning of the system is expressed through the goals, values, and logic of the farming processes. This theory is, however, less useful when studying the heterogeneous character of a farm as a mixture of biology, sociology, technology, and economy. ANT offers an approach to focus on the heterogeneous network of interactions of human and non-human actors, such as knowledge, technology, money, farmland, animals, plants, etc., and how these interactions depend on both the quality of the actors and the network context of interaction. But the theory is weak when it comes to explaining the self-organizing character of a farm enterprise. Using Peirce’s general semiotics as a platform, the two theories in combination open a new and radical framework for multidisciplinary studies of farm enterprises that may serve as a platform for communication between the different disciplines and approaches

    Adaptation and Resilience of Interdependent Infrastructure Systems: a Complex Systems Perspective

    Get PDF
    The effects of disruption upon one or more components in interdependent infrastructure systems and the ability of the system to return to normal operations, is investigated in this paper. This addresses the concept of resilience, and examines the trade-off between redundancy and efficiency, as well as the adaptive ability of a system to respond to disruptions and continue to operate, albeit not necessarily as it did initially

    A statistical model for in vivo neuronal dynamics

    Get PDF
    Single neuron models have a long tradition in computational neuroscience. Detailed biophysical models such as the Hodgkin-Huxley model as well as simplified neuron models such as the class of integrate-and-fire models relate the input current to the membrane potential of the neuron. Those types of models have been extensively fitted to in vitro data where the input current is controlled. Those models are however of little use when it comes to characterize intracellular in vivo recordings since the input to the neuron is not known. Here we propose a novel single neuron model that characterizes the statistical properties of in vivo recordings. More specifically, we propose a stochastic process where the subthreshold membrane potential follows a Gaussian process and the spike emission intensity depends nonlinearly on the membrane potential as well as the spiking history. We first show that the model has a rich dynamical repertoire since it can capture arbitrary subthreshold autocovariance functions, firing-rate adaptations as well as arbitrary shapes of the action potential. We then show that this model can be efficiently fitted to data without overfitting. Finally, we show that this model can be used to characterize and therefore precisely compare various intracellular in vivo recordings from different animals and experimental conditions.Comment: 31 pages, 10 figure

    Quantitative modelling of the human–Earth System a new kind of science?

    No full text
    The five grand challenges set out for Earth System Science by the International Council for Science in 2010 require a true fusion of social science, economics and natural science—a fusion that has not yet been achieved. In this paper we propose that constructing quantitative models of the dynamics of the human–Earth system can serve as a catalyst for this fusion. We confront well-known objections to modelling societal dynamics by drawing lessons from the development of natural science over the last four centuries and applying them to social and economic science. First, we pose three questions that require real integration of the three fields of science. They concern the coupling of physical planetary boundaries via social processes; the extension of the concept of planetary boundaries to the human–Earth System; and the possibly self-defeating nature of the United Nation’s Millennium Development Goals. Second, we ask whether there are regularities or ‘attractors’ in the human–Earth System analogous to those that prompted the search for laws of nature. We nominate some candidates and discuss why we should observe them given that human actors with foresight and intentionality play a fundamental role in the human–Earth System. We conclude that, at sufficiently large time and space scales, social processes are predictable in some sense. Third, we canvass some essential mathematical techniques that this research fusion must incorporate, and we ask what kind of data would be needed to validate or falsify our models. Finally, we briefly review the state of the art in quantitative modelling of the human–Earth System today and highlight a gap between so-called integrated assessment models applied at regional and global scale, which could be filled by a new scale of model
    • …
    corecore