6,867 research outputs found

    Spectrum Coordination in Energy Efficient Cognitive Radio Networks

    Get PDF
    Device coordination in open spectrum systems is a challenging problem, particularly since users experience varying spectrum availability over time and location. In this paper, we propose a game theoretical approach that allows cognitive radio pairs, namely the primary user (PU) and the secondary user (SU), to update their transmission powers and frequencies simultaneously. Specifically, we address a Stackelberg game model in which individual users attempt to hierarchically access to the wireless spectrum while maximizing their energy efficiency. A thorough analysis of the existence, uniqueness and characterization of the Stackelberg equilibrium is conducted. In particular, we show that a spectrum coordination naturally occurs when both actors in the system decide sequentially about their powers and their transmitting carriers. As a result, spectrum sensing in such a situation turns out to be a simple detection of the presence/absence of a transmission on each sub-band. We also show that when users experience very different channel gains on their two carriers, they may choose to transmit on the same carrier at the Stackelberg equilibrium as this contributes enough energy efficiency to outweigh the interference degradation caused by the mutual transmission. Then, we provide an algorithmic analysis on how the PU and the SU can reach such a spectrum coordination using an appropriate learning process. We validate our results through extensive simulations and compare the proposed algorithm to some typical scenarios including the non-cooperative case and the throughput-based-utility systems. Typically, it is shown that the proposed Stackelberg decision approach optimizes the energy efficiency while still maximizing the throughput at the equilibrium.Comment: 12 pages, 10 figures, to appear in IEEE Transactions on Vehicular Technolog

    Understanding Leadership A Coordination Theory

    Get PDF
    Important aspects of leadership behavior can be rendered intelligible through a focus on coordination games. The concept of common knowledge is shown to be particularly important to understanding leadership. Thus, leaders may establish common knowledge conditions and assist the coordination of strategies in this way, or make decisions in situations where coordination problems persist in spite of common knowledge.Game theory, management, organization

    Distributed formation control of multiple unmanned aerial vehicles over time-varying graphs using population games

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a control technique based on distributed population dynamics under time-varying communication graphs for a multi-agent system structured in a leader-follower fashion. Here, the leader agent follows a particular trajectory and the follower agents should track it in a certain organized formation manner. The tracking of the leader can be performed in the position coordinates x; y; and z, and in the yaw angle phi. Additional features are performed with this method: each agent has only partial knowledge of the position of other agents and not necessarily all agents should communicate to the leader. Moreover, it is possible to integrate a new agent into the formation (or for an agent to leave the formation task) in a dynamical manner. In addition, the formation configuration can be changed along the time, and the distributed population-games-based controller achieves the new organization goal accommodating conveniently the information-sharing graph in function of the communication range capabilities of each UAV. Finally, several simulations are presented to illustrate different scenarios, e.g., formation with time-varying communication network, and time-varying formationPeer ReviewedPostprint (author's final draft

    Transforming Energy Networks via Peer to Peer Energy Trading: Potential of Game Theoretic Approaches

    Get PDF
    Peer-to-peer (P2P) energy trading has emerged as a next-generation energy management mechanism for the smart grid that enables each prosumer of the network to participate in energy trading with one another and the grid. This poses a significant challenge in terms of modeling the decision-making process of each participant with conflicting interest and motivating prosumers to participate in energy trading and to cooperate, if necessary, for achieving different energy management goals. Therefore, such decision-making process needs to be built on solid mathematical and signal processing tools that can ensure an efficient operation of the smart grid. This paper provides an overview of the use of game theoretic approaches for P2P energy trading as a feasible and effective means of energy management. As such, we discuss various games and auction theoretic approaches by following a systematic classification to provide information on the importance of game theory for smart energy research. Then, the paper focuses on the P2P energy trading describing its key features and giving an introduction to an existing P2P testbed. Further, the paper zooms into the detail of some specific game and auction theoretic models that have recently been used in P2P energy trading and discusses some important finding of these schemes.Comment: 38 pages, single column, double spac

    On the Two-user Multi-carrier Joint Channel Selection and Power Control Game

    Full text link
    In this paper, we propose a hierarchical game approach to model the energy efficiency maximization problem where transmitters individually choose their channel assignment and power control. We conduct a thorough analysis of the existence, uniqueness and characterization of the Stackelberg equilibrium. Interestingly, we formally show that a spectrum orthogonalization naturally occurs when users decide sequentially about their transmitting carriers and powers, delivering a binary channel assignment. Both analytical and simulation results are provided for assessing and improving the performances in terms of energy efficiency and spectrum utilization between the simultaneous-move game (with synchronous decision makers), the social welfare (in a centralized manner) and the proposed Stackelberg (hierarchical) game. For the first time, we provide tight closed-form bounds on the spectral efficiency of such a model, including correlation across carriers and users. We show that the spectrum orthogonalization capability induced by the proposed hierarchical game model enables the wireless network to achieve the spectral efficiency improvement while still enjoying a high energy efficiency.Comment: 31 pages, 13 figures, accepted in IEEE Transactions on Communication
    corecore