1,837 research outputs found

    Characterization of Cs vapor cell coated with octadecyltrichlorosilane using coherent population trapping spectroscopy

    Full text link
    We report the realization and characterization using coherent population trapping (CPT) spectroscopy of an octadecyltrichlorosilane (OTS)-coated centimeter-scale Cs vapor cell. The dual-structure of the resonance lineshape, with presence of a narrow structure line at the top of a Doppler-broadened structure, is clearly observed. The linewidth of the narrow resonance is compared to the linewidth of an evacuated Cs cell and of a buffer gas Cs cell of similar size. The Cs-OTS adsorption energy is measured to be (0.42 ±\pm 0.03) eV, leading to a clock frequency shift rate of 2.7×109/2.7\times10^{-9}/K in fractional unit. A hyperfine population lifetime, T1T_1, and a microwave coherence lifetime, T2T_2, of 1.6 and 0.5 ms are reported, corresponding to about 37 and 12 useful bounces, respectively. Atomic-motion induced Ramsey narrowing of dark resonances is observed in Cs-OTS cells by reducing the optical beam diameter. Ramsey CPT fringes are detected using a pulsed CPT interrogation scheme. Potential applications of the Cs-OTS cell to the development of a vapor cell atomic clock are discussed.Comment: 33 pages, 13 figure

    Study of EIT resonances in an anti-relaxation coated Rb vapor cell

    Full text link
    We demonstrate---experimentally and theoretically---that resonances obtained in electromagnetically induced transparency (EIT) can be both bright and dark. The experiments are done using magnetic sublevels of a hyperfine transition in the D1_1 line of 87^{87}Rb. The degeneracy of the sublevels is removed by having a magnetic field of value 27 G. The atoms are contained in a room-temperature vapor cell with anti-relaxation coating on the walls. Theoretical analysis based on a two-region model reproduces the experimental spectrum quite well. This ability to have both bright and dark resonances promises applications in sub- and super-luminal propagation of light, and sensitive magnetometry.Comment: 16 pages, 9 figure

    A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells

    Get PDF
    We have manufactured more than 250 nominally identical paraffin-coated Cs vapor cells (30 mm diameter bulbs) for multi-channel atomic magnetometer applications. We describe our dedicated cell characterization apparatus. For each cell we have determined the intrinsic longitudinal, \sGamma{01}, and transverse, \sGamma{02}, relaxation rates. Our best cell shows \sGamma{01}/2\pi\approx 0.5 Hz, and \sGamma{02}/2\pi\approx 2 Hz. We find a strong correlation of both relaxation rates which we explain in terms of reservoir and spin exchange relaxation. For each cell we have determined the optimal combination of rf and laser powers which yield the highest sensitivity to magnetic field changes. Out of all produced cells, 90% are found to have magnetometric sensitivities in the range of 9 to 30 fTHz. Noise analysis shows that the magnetometers operated with such cells have a sensitivity close to the fundamental photon shot noise limit

    Resonant nonlinear magneto-optical effects in atoms

    Get PDF
    In this article, we review the history, current status, physical mechanisms, experimental methods, and applications of nonlinear magneto-optical effects in atomic vapors. We begin by describing the pioneering work of Macaluso and Corbino over a century ago on linear magneto-optical effects (in which the properties of the medium do not depend on the light power) in the vicinity of atomic resonances, and contrast these effects with various nonlinear magneto-optical phenomena that have been studied both theoretically and experimentally since the late 1960s. In recent years, the field of nonlinear magneto-optics has experienced a revival of interest that has led to a number of developments, including the observation of ultra-narrow (1-Hz) magneto-optical resonances, applications in sensitive magnetometry, nonlinear magneto-optical tomography, and the possibility of a search for parity- and time-reversal-invariance violation in atoms.Comment: 51 pages, 23 figures, to appear in Rev. Mod. Phys. in Oct. 2002, Figure added, typos corrected, text edited for clarit

    A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells

    Get PDF
    We have manufactured more than 250 nominally identical paraffin-coated Cs vapor cells (28mm inner diameter bulbs) for multi-channel atomic magnetometer applications. We describe our dedicated cell characterization apparatus. For each cell we have determined the intrinsic longitudinal, Γ 01, and transverse, Γ 02, relaxation rates. Our best cell shows Γ 01/2π≈0.5Hz, and Γ 02/2π≈2Hz. We find a strong correlation of both relaxation rates which we explain in terms of reservoir and spin exchange relaxation. For each cell we have determined the optimal combination of rf and laser powers which yield the highest sensitivity to magnetic field changes. Out of all produced cells, 90% are found to have magnetometric sensitivities in the range of 9to 30fT Hz\sqrt{\mathrm{Hz}} . Noise analysis shows that the magnetometers operated with such cells have a sensitivity close to the fundamental photon shot noise limi

    Buffer-gas induced absorption resonances in Rb vapor

    Full text link
    We observe transformation of the electromagnetically induced transparency (EIT) resonance into the absorption resonance in a Λ\Lambda interaction configuration in a cell filled with 87^{87}Rb and a buffer gas. This transformation occurs as a one-photon detuning of the coupling fields is varied from the atomic transition. No such absorption resonance is found in the absence of a buffer gas. The width of the absorption resonance is several times smaller than the width of the EIT resonance, and the changes of absorption near these resonances are about the same. Similar absorption resonances are detected in the Hanle configuration in a buffered cell.Comment: 11 pages, 15 figures; 13 pages, 17 figures, added numerical simulatio

    Long-lived non-classical correlations for scalable quantum repeaters at room temperature

    Get PDF
    Heralded single-photon sources with on-demand readout are promising candidates for quantum repeaters enabling long-distance quantum communication. The need for scalability of such systems requires simple experimental solutions, thus favouring room-temperature systems. For quantum repeater applications, long delays between heralding and single-photon readout are crucial. Until now, this has been prevented in room-temperature atomic systems by fast decoherence due to thermal motion. Here we demonstrate efficient heralding and readout of single collective excitations created in warm caesium vapour. Using the principle of motional averaging we achieve a collective excitation lifetime of 0.27±0.040.27\pm 0.04 ms, two orders of magnitude larger than previously achieved for single excitations in room-temperature sources. We experimentally verify non-classicality of the light-matter correlations by observing a violation of the Cauchy-Schwarz inequality with R=1.4±0.1>1R=1.4\pm 0.1>1. Through spectral and temporal analysis we identify intrinsic four-wave mixing noise as the main contribution compromising single-photon operation of the source.Comment: 21 pages total, the first 17 pages are the main article and the remaining pages are supplemental materia

    Slow light in paraffin-coated Rb vapor cells

    Full text link
    We present preliminary results from an experimental study of slow light in anti-relaxation-coated Rb vapor cells, and describe the construction and testing of such cells. The slow ground state decoherence rate allowed by coated cell walls leads to a dual-structured electromagnetically induced transparency (EIT) spectrum with a very narrow (<100 Hz) transparency peak on top of a broad pedestal. Such dual-structure EIT permits optical probe pulses to propagate with greatly reduced group velocity on two time scales. We discuss ongoing efforts to optimize the pulse delay in such coated cell systems.Comment: 6 pages, 6 figures, submitted to Journal of Modern Optic
    corecore