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Abstract We have manufactured more than 250 nominally
identical paraffin-coated Cs vapor cells (28 mm inner di-
ameter bulbs) for multi-channel atomic magnetometer ap-
plications. We describe our dedicated cell characterization
apparatus. For each cell we have determined the intrinsic
longitudinal, Γ01, and transverse, Γ02, relaxation rates. Our
best cell shows Γ01/2π ≈ 0.5 Hz, and Γ02/2π ≈ 2 Hz. We
find a strong correlation of both relaxation rates which we
explain in terms of reservoir and spin exchange relaxation.
For each cell we have determined the optimal combination
of rf and laser powers which yield the highest sensitivity to
magnetic field changes. Out of all produced cells, 90% are
found to have magnetometric sensitivities in the range of
9 to 30 fT

√
Hz. Noise analysis shows that the magnetome-

ters operated with such cells have a sensitivity close to the
fundamental photon shot noise limit.
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1 Introduction

Spin polarized alkali vapors prepared by optical pumping
have been used for 50 years for fundamental studies in
atomic physics and applications thereof [1]. The achieved
sensitivities depend mainly on the (transverse) lifetime T2

of the spin coherence in the vapor, and, to a lesser extent,
on the (longitudinal) lifetime T1 of the spin polarization.
Those lifetimes are related to corresponding relaxation rates
by Γi = T −1

i . To assure a long-lived spin polarization, the
vapor cells are either filled with a buffer gas mixture or are
left evacuated while applying an anti-relaxation coating on
the walls. In the first case, the buffer gas in the cell confines
the atoms to a diffusion-limited volume and thus reduces
the rate of depolarizing wall collisions. In the second case, a
thin film of paraffin or similar substance applied to the cell
wall reduces the collisional sticking time with the wall and
thereby the dephasing interactions with magnetic impurities
embedded in the walls.

Alkali vapors in paraffin-coated cells were introduced
in 1958 [2] and have since been widely applied in atomic
physics spanning applications from magnetometers [3–5],
over slow light studies [6], to spin-squeezing [7], and light-
induced atomic desorption (LIAD) [8, 9] studies.

Our group develops atomic magnetometers for the accu-
rate measurement of small changes in already weak fields
(typically 10% of the Earth’s field [10]), a technique that
we currently apply to the measurement of the faint magnetic
fields produced by the beating human heart) [11–13] and for
magnetic field measurement and control in the search for a
neutron electric dipole moment [14, 15]. Both experiments
call for a large number (50 to 100) of individual sensors to
be operated simultaneously. Although buffer gas cells were
used in our initial work [11], we currently focus on paraffin-
coated cells that have a reduced sensitivity to magnetic field
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gradients because of motional narrowing and to temperature
effects compared to buffer gas cells [16, 17].

In order to fulfill the requirements of the mentioned ex-
periments, we have initiated a large scale production of cells
that has yielded over 250 cells in the past year. We have de-
veloped an automatic cell characterization facility for deter-
mining the quality and reproducibility of the cell coatings. In
this work, we describe this characterization facility in detail
and report results (intrinsic relaxation times, intrinsic mag-
netometric sensitivity) based on significant cell statistics.
A comparative study of a small sample of paraffin-coated
cells produced over four decades was reported in [18]. To
our knowledge, our present study involves the largest sam-
ple of coated cells ever compared.

2 Cell production

The paraffin-coated glass cells are manufactured in our in-
stitute. Pyrex is formed into a spherical bulb (inner diame-
ter of ≈28 mm, wall thickness of 1 mm) that is connected
to a sidearm consisting of a Pyrex tube with 4 mm inner
(7 mm outer) diameter, which acts as a reservoir to hold
the droplet of solid cesium after coating, filling, and seal-
ing the cell (Fig. 1). The metallic Cs is the source for the
saturated Cs vapor filling the cell. Near the cell proper, the
sidearm is constricted into a capillary with a design diame-
ter of 0.75(25) mm that reduces spin depolarizing collisions
with the bulk Cs in the sidearm.

A typical coating and filling process takes about one
week. Ten cells are mounted on a glass structure together
with a paraffin containing reservoir and a Cs metal contain-
ing ampule, both isolated from the vacuum system by break-
seals. The system is connected to a turbomolecular pump

Fig. 1 Paraffin-coated Cs vapor cell. The small amount of the solid
alkali metal is well visible in the sidearm. The arrow points to the
capillary which reduces depolarizing collisions of vapor atoms from
the cell with the solid Cs

stand via a liquid nitrogen cold trap and all coating and fill-
ing steps are performed in a vacuum below 10−7 mbar. Prior
to coating, the whole structure is baked for 5 hours at 370◦C.

The coating process is similar to the one reported in
[8, 9]. Our current choice of coating material is a commer-
cial paraffin, Paraflint H1, from Sasol Wax American Inc.
After baking the system, the break-seal of the paraffin reser-
voir is broken by a piece of iron sealed in a glass bead
(“hammer”) manipulated from the outside by a permanent
magnet. The wax is deposited onto the cell walls by heat-
ing the paraffin reservoir. During the coating procedure the
pressure rises to 9 × 10−7 mbar, and the cell is kept isolated
from the cesium containing ampule. Once the cell is coated,
the same hammer is used to break the seal of the Cs am-
pule and a thin film of metallic Cs is distilled into the cell’s
sidearm by heating the Cs ampule, after which the end of
the sidearm is sealed off. During Cs distillation the pressure
rises to 3 × 10−7 mbar, and at the end of filling the cells
are pumped down to a pressure below 10−7 mbar before be-
ing sealed. The filled cells are activated by heating them in a
oven at 80◦C for 10 hours, while assuring that the sidearm is
kept at a sightly lower temperature. In this way we produce
10 coated cells in one week.

3 The cell characterization setup

Following manufacture, each cell undergoes a characteri-
zation procedure in a dedicated experimental apparatus for
determining the relevant parameters that indicate its mag-
netometric properties. Our current magnetometers use the
technique of optically detected magnetic resonance in the
Double Resonance Orientation Magnetometer or DROM
configuration (notation introduced in [12]), also called
Mx -configuration [14, 19]. The underlying theory will be
addressed below. It was thus a natural choice to use the same
technique for the dedicated cell testing facility.

3.1 Experimental setup and signal recording

The experimental apparatus is shown in Fig. 2. The laser
source is a DFB laser (λ = 894 nm) whose frequency is ac-
tively stabilized to the 4 ⇒ 3 hyperfine component of the
Cs D1 transition using the dichroic atomic vapor laser lock
(DAVLL) technique [20]. The light is carried by a 400 µm
diameter multimode fiber into a three-layer mu-metal mag-
netic shield that contains the actual double resonance setup.
Prior to entering the fiber, the laser power, PL, is computer-
controlled via a stepper-motor driving a half-wave plate lo-
cated before a linear polarizer. The light leaving the fiber
is collimated and passes a linear polarizer followed by a
quarter-wave plate to create circular polarization before en-
tering the Cs cell. The fiber is wound into several loops so
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Fig. 2 The cell testing apparatus. Frequency stabilized laser light
is carried by a multimode fiber into a threefold magnetic shield
(L: lenses). Circular polarization is created by a polarizer (P) and a
quarter-wave plate (λ/4). The transmitted power is recorded by a pho-
todiode (PD) and the modulated light power components are extracted
by a lock-in amplifier. A personal computer controls the light power,
performs scans of the frequency ω via a programmable frequency
synthesizer (PFS, Stanford Research model SR345), and records the
lock-in signals

that the exiting light is completely depolarized, thus avoid-
ing vibration related polarization fluctuations that translate
into power fluctuations after the polarizer.

The paraffin-coated Cs cell to be characterized is placed
in the center of the magnetic shields where three pairs of
Helmholtz coils and three pairs of anti-Helmholtz coils com-
pensate residual stray magnetic fields and gradients, re-
spectively. A static magnetic field B0 with an amplitude
of a few µT is applied in the yz-plane at 45◦ with respect
to the laser beam direction, k̂ = ẑ. The transmitted light
power is recorded by a nonmagnetic photodiode and then
amplified. Absorbed laser light pumps the Cs atoms into
the nonabsorbing (dark) |F = 4,MF = 3,4〉 magnetic sub-
levels, thereby creating a vector spin polarization (orienta-
tion) Pz ∝ 〈Fz〉. A small rf-magnetic field B1(t) of a few nT,
constant in amplitude, but rotating at frequency ω, is applied
in the plane perpendicular to B0. The choice of a rotating,
rather than a linearly polarized, oscillating field is used to
suppress magnetic resonance transitions in the F = 3 state
[21]. B1(t) drives magnetic resonance transitions between
adjacent sublevels in the F = 4 hyperfine state, whose Zee-
man degeneracy is lifted by the static magnetic field B0. For
a properly oriented magnetic field B0, the transmitted light
power will be modulated at the rotation frequency ω.

When ω is close to the Larmor frequency ωL = γF B0,
where γF 	 2π · 3.5 Hz/nT is the Cs ground state gy-
romagnetic factor, a resonance occurs in the absorption
process, manifesting itself in both the amplitude and phase

of the light power modulation. The corresponding in-phase,
quadrature, and phase signals are extracted by means of a
lock-in amplifier (LIA, Stanford Instruments, model SR830)
whose output signals are read by a personal computer. The
rotating field frequency is generated by a computer con-
trolled programmable synthesizer. The computer varies this
frequency, ω, by a linear ramp in the range of ± 2π · 100 Hz
around the Larmor frequency during a scan time of 40 s.
A dedicated electronics box generates from this AC voltage
two 90◦ dephased AC currents that drive two perpendicular
coil pairs (not shown in Fig. 2) producing the rotating field
B1(t).

The characterization of each individual cell consists in
the recording of resonance spectra for a set of 12 selected
(and computer controlled) values of the laser power PL in
the range of 1 to 12 µW. It is difficult to determine the ab-
solute laser intensity for a given laser power PL, because
of the (asymmetric) transverse beam profiles and their mod-
ification by the cell’s spherical shape. We therefore quan-
tify the light intensity in terms of the laser power PL, to
which it is proportional. Note that PL used below refers to
the power measured after the cell with the laser frequency
resonant with the 4 → 3 Cs D1 transition and the rf power
off. A typical automated characterization run, including in-
sertion of the cell into the apparatus, takes 10 minutes. Data
analysis is performed by a semi-automatic dedicated Mathe-
matica [22] code, which takes another 5 minutes. In a regular
working day it is thus possible to characterize 30 to 40 cells.

3.2 DROM theory

A modulation of the transmitted power only occurs when the
static magnetic field B0 is neither parallel nor perpendicular
to the direction of light propagation. In that case, the trans-
mitted light power has components that oscillate in phase,
Dω, and in quadrature, Aω, with respect to the rotating field

B1(t) = Ωrf

γF

ei ωt . (1)

The in-phase and the quadrature components depend on
the detuning, δ = ω − ω0, between the driving, ω, and the
Larmor, ω0, frequencies. The dependence of Dω and Aω on
δ are dispersive and absorptive Lorentzians given by [10]

Dω(δ) = −η〈Fz〉 sin (2θ)
Ωrfδ

δ2 + Γ 2
2 + Γ2

Γ1
Ω2

rf

,

(2)

Aω(δ) = −η〈Fz〉 sin (2θ)
ΩrfΓ2

δ2 + Γ 2
2 + Γ2

Γ1
Ω2

rf

,

where A0 = η〈Fz〉 sin (2θ) is a common signal amplitude
that depends—via the spin polarization 〈Fz〉 created by op-
tical pumping and the detection of the polarization’s preces-
sion via light absorption—on the laser power PL. The cal-
ibration constant η includes all of the apparatus constants
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such that Dω(δ) and Aω(δ) are measured in volts. With re-
spect to Fig. 2, U(t) = Dω(δ) cosωt + Aω(δ) sinωt . The
phase φω(δ) between the drive and the power modulation

φω(δ) = + arctan

(
Γ2

δ

)
, (3)

depends also on the detuning δ. Expressions (2) and (3) are
valid for atomic media with an arbitrary ground state an-
gular momentum, as may be shown easily by a theoretical
treatment analogous to the discussion of the signals in the
DRAM (double resonance alignment magnetometer) geom-
etry presented in [12]. In the above expressions, θ is the
angle between the applied magnetic field B0 and the laser
beam propagation direction k̂.

3.3 Signal analysis

Since the resonance signals are extracted by a lock-in am-
plifier, and since it is experimentally difficult to precisely
determine the phase of the rotating field (and hence the
phase difference between that field and the modulation of
the photocurrent), the signals produced by the lock-in am-
plifier are superpositions of the absorptive and dispersive
lineshapes Aω(δ) and Dω(δ). Using the fitting procedure
described in detail in [10] it is possible to extract the pure
absorptive and dispersive components. For fitting the the-
oretical lineshapes, the combined apparatus constant A0 ≡
η〈Fz〉 sin (2θ) is taken as one fitting parameter, with A0

measured in volts. Other parameters are the relaxation rates
Γ1 and Γ2, the resonance frequency ω0, an unknown overall
phase, as well as weighting factors of the absorptive and dis-
persive components. The Rabi frequency Ωrf can be easily
calibrated as described in [3] and a fixed numerical value is
used when fitting (2) and (3).

Typical resonance lineshapes of the in-phase, quadrature,
and phase signals are shown in Fig. 3, together with the fitted
theoretical shapes (2) and (3). Fitting the absorptive and dis-
persive spectra by (2) with the relaxation rates Γ1 and Γ2 as
free parameters yields a strong correlation between the two
rates in the χ2-minimizing algorithm, with corresponding
large uncertainties in the numerical values. We have there-
fore opted for the following fitting procedure. In a first step,
we use the fact that the phase does not depend on Γ1 and fit
the dependence φ(ω) given by (3) to the data. The resulting
Γ2 value is then used as a fixed parameter in the subsequent
simultaneous fit of the absorptive and dispersive lineshapes
to infer Γ1. In this way, we obtain (Γ1,Γ2)-pairs for each
value of the laser power PL. In addition, the fits yield the
overall signal amplitude A0.

Fig. 3 Lock-in demodulated magnetic resonance signals. Top: The
dispersive signal (blue) represents the in-phase component D(ω) and
the absorptive signal (red) the quadrature component A(ω). Bottom:
Phase signal φ(ω). Experimental points are shown together with lines
fitted according to (2)–(3). All signals were recorded at B0 	 4 µT
(ω0 	 2π · 11640 Hz), with PL = 6 µW, and B1 = 1.3 nT

4 Results

4.1 Relaxation rates

Figure 4 shows the dependence of the longitudinal and trans-
verse relaxation rates on the laser power PL. There is, to our
knowledge, no theoretical algebraic expression describing
that dependence for ground states of arbitrary angular mo-
mentum F . We therefore fit, as in [3], the dependence by a
quadratic polynomial

Γi(PL) = Γ0i + αi PL + βi P
2
L, (4)

which allows us to infer the intrinsic relaxation rates, Γ01

and Γ02, i.e., the relaxation rates extrapolated to zero light
power.

4.2 Signal amplitudes

Figure 5 shows the dependence of the signal amplitude A0

on the laser power PL. Here again, we have no theoretically
derived algebraic expression describing that dependence for
transitions between states with arbitrary angular momenta.
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We therefore, as in [3], fit the experimental dependence by
the empirical saturation formula

S0(PL) = C
P 2

L

(PL + PS1)(PL + PS2)
(5)

which accounts for an amplitude growing as P 2
L at low pow-

ers, and where PS1 and PS2 are saturation powers.
Figures 4 and 5 show typical dependencies of Γ1, Γ2,

and S0 on PL for a given cell, together with the fits (solid
lines) by (4) and (5). We have characterized 253 paraffin-
coated cells of equal diameter using the method described
above. The histograms in Fig. 6 (top, middle) show the dis-
tributions of the intrinsic longitudinal and transverse relax-
ation rates of the 241 best cells. The scatter plot in the lower
graph of Fig. 6 shows that the two rates are strongly corre-
lated. The fitted line represents a linear relation of the form

Fig. 4 Laser power dependence of the relaxation rates Γ1 (boxes) and
Γ2 (diamonds). The experimental points are fitted with (4). The (sta-
tistical) error bars on the individual data points are smaller than the
symbol size

Fig. 5 Magnetic resonance amplitude versus laser power. The experi-
mental points are fitted with the polynomial expression from (5), which
yields, for this specific cell, the saturation parameters PS1 = 634 nW
and PS2 = 16.3 µW. The error bars are smaller than the plotting symbol
size

Fig. 6 Histogram of intrinsic longitudinal (top) and transverse (mid-
dle) relaxation times of 241 coated cells. The upper axis in the top
graph gives the radius of the effective depolarization spot that mod-
els reservoir relaxation (see text). The lower graph shows the cor-
relation between the relaxation rates, together with a fit of the form
Γ02 = sΓ01 + a
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Γ02 = s Γ01 + a with s = 1.00(1) and a = 1.35(3) Hz. The
longitudinal and transverse relaxation rates are thus equal,
up to a constant offset that affects the Γ02 values only. For
an isotropic relaxation process, in which all Zeeman sub-
levels relax at the same rate, one would expect Γ01 = Γ02.
In Sect. 5 below, we will come back to a quantitative discus-
sion of those contributions.

4.3 Magnetometric sensitivity

The intrinsic relaxation rates are well suited to characterize
each individual cell. In particular, the transverse rate Γ02,
which determines the intrinsic width of the signals Aω and
Dω, is relevant for magnetometric applications. However,
the intrinsic rates are, by definition, rates for vanishing laser
and rf powers. Therefore, the magnetometric sensitivity of a
given cell cannot be inferred directly from the intrinsic rates,
since magnetometers have to be operated at finite laser and
rf power levels.

The linear zero crossing of the dispersive signal Dω

near resonance is convenient for magnetometric applications
since any magnetic field change δB yields a signal change

δDω =
∣∣∣∣dDω

dB

∣∣∣∣
ω=ωL

∣∣∣∣δB (6)

that is proportional to δB . The lowest magnetic field change
δB that can be detected depends on the shot noise of the
DC photocurrent IL ∝ PL. A feedback resistor, RF , in the
transimpedance amplifier, marked I/U in Fig. 2, transforms
that photocurrent into a photovoltage UL, whose shot noise
(in a bandwidth of 1 Hz) is given by

δUL = RF δIL = RF

√
2eIL = RF

√
2QEPLe2

hν
, (7)

where QE = 70% is the quantum efficiency of the photodi-
ode, and ν the laser frequency. The experimentally measured
signal noise lies ≈ 20% above the shot noise level, due to
laser power fluctuations and amplifier noise. With the cali-
bration constant η in (2), δDω is expressed in volts, i.e., in
the same units as δUL.

For each set of the experimental parameters PL and Ωrf

one can thus define the magnetometric sensitivity as the field
fluctuation δBNEM that induces a signal change δDω of mag-
nitude equal to δUL. This noise equivalent magnetic field
fluctuation (NEM) is thus given by

δBNEM = δUL

| dDω

dB
|ω=ωL

| (8)

= 1

γF

Γ 2
2 + Ω2

rfΓ2/Γ1

A0Ωrf
δUL. (9)

Fig. 7 Plot of δBNEM as a function of the amplitude Ωrf of the rotating
field and of the laser power PL. The contours represent the lines of
constant NEM, spaced by 1 fT/

√
Hz, with selected numerical values

indicated. The cross refers to the minimal NEM value, which, for the
cell represented here has a value of 10.5 fT/

√
Hz

Fig. 8 Histogram of the minimal NEM values, δBmin
NEM, of 241 cells,

which represent 94% of the cells produced to date

A0, Γ1, and Γ2 are (PL dependent) parameters obtained
from the fits of the experimental Dω spectra. δUL is as-
sumed to be the PL dependent shot noise value (7). We recall
that Ωrf is not a fit parameter, and that calibrated numerical
values of Ωrf are inserted in (9) when evaluating δBNEM.

For each cell, we have evaluated δBNEM for a range of pa-
rameters PL and Ωrf. Figure 7 shows a typical result in terms
of a contour plot of δBNEM. For each cell, we determine the
optimal NEM value, δBmin

NEM, by a numerical minimization
procedure. The minimum for the cell shown in Fig. 7 is in-
dicated by a cross.
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The distribution of minimal NEM values, δBmin
NEM, thus

obtained is represented in form of a histogram in Fig. 8.
Only cells with δBmin

NEM < 40fT/
√

Hz are shown. This set
represents 94% of all cells we have produced to date.

5 Discussion

The distribution of linewidths shown in Fig. 6 reveals a de-
pendence of the form Γ02 = Γ01 + �Γrelax, with a constant
offset relaxation rate �Γrelax, whose numerical value (fit
parameter a in Fig. 6) is �Γrelax/2π = 1.35 Hz. Here we
show that Γ01 is ultimately limited by atoms escaping to
the sidearm, and that �Γrelax is mainly determined by spin
exchange collisions (�Γex) with a minor contribution from
magnetic field inhomogeneities (�Γ�B ).

5.1 Longitudinal relaxation

The intrinsic longitudinal relaxation rate Γ01 is limited by
processes which thermalize the magnetic sublevel popula-
tions, such as atoms escaping through the capillary to the
sidearm where they eventually collide with the solid Cs
droplet, atoms hitting an imperfectly coated surface spot of
the spherical bulb, or atoms being absorbed by the coating
[8, 9]. All of those processes can be parametrized in terms
of an effective depolarizing surface area σdep ≡ πr2

dep. We
will refer to such processes in general as “reservoir losses”.
The distribution of Γ01 values in the top graph of Fig. 6 rep-
resents the statistical distribution of such imperfections, due
to uncontrolled parameters in the cell production process.
In a spherical cell of radius R, the rate of wall collisions is
γwall = 3v/4R, where v is the average thermal velocity. The
intrinsic longitudinal relaxation rate can thus be expressed
in terms of the effective depolarizing spot radius, rdep, via

Γ01 = γwall
πr2

dep

4πR2
= 3v r2

dep

16R3
. (10)

The upper axis in the top graph of Fig. 6 shows the radius
rdep corresponding to the Γ01 value on the lower axis. The
best cell produced so far has a longitudinal relaxation rate
Γ01/2π ≈ 0.50(5) Hz, which corresponds to ddep = 2rdep =
1 mm. This value is compatible with the design diameter,
dcap = 0.75(25) mm, of the capillary, which shows that Γ01

is ultimately limited by atoms escaping into the sidearm.

5.2 Transverse relaxation: field inhomogeneities

If the offset magnetic field B0 varies over the cell volume,
it produces a distribution of resonance frequencies ωL, and
hence a broadening of the magnetic resonance lines given
by (2) and (3). The fitting analysis interprets this broadening
as an increase of the transverse linewidth Γ02 by an amount

�Γ�B . A main advantage of coated cells over buffer gas
filled cells is that, because of multiple wall collisions, the
atoms explore a large fraction of the cell volume during
the spin coherence time, which effectively averages out field
gradients. Standard line narrowing theory [23] predicts that
an inhomogeneous magnetic field gives a lowest order con-
tribution

Γ�B = (γF �Brms)
2τc (11)

to the transverse relaxation rate, where �Brms is the rms
value of the magnetic field inhomogeneities averaged over
the cell volume, and τc the correlation time of the field fluc-
tuations seen by the cell, which can be approximated by
the mean time between wall collisions. This expression is
valid in the so-called good averaging regime [23], i.e., for
γF �Brmsτc � 1. From the geometry of the used coils we
estimate �Brms to be on the order of 2 nT, which yields
�ν�B = Γ�B/2π = 30 mHz. Even when allowing for a
5 times larger inhomogeneity (i.e., �B = 10 nT) from un-
compensated residual fields—recall that we actively com-
pensate linear field gradients—one still has �ν�B < 0.1 Hz.
We can thus ascertain that the contribution from field inho-
mogeneities to Γ02 is negligible. We note that the good aver-
aging conditions for �B = 2 and 10 nT read γF �Brmsτc =
0.004 and 0.02, respectively.

5.3 Transverse relaxation: spin exchange

As derived by Ressler et al. [24], the contribution from spin
exchange collisions to the transverse relaxation rate is given
by

�Γex = α
2I

2I + 1
nCsσexvr , (12)

where I is the nuclear spin, nCs the Cs number density, vr

the relative velocity of colliding atoms, and σex = 2.06 ×
10−14 cm2 [24] the spin exchange cross section for Cs–Cs
collisions. The parameter α describes the slowing down of
the spin relaxation due to the hyperfine interaction. In small
magnetic fields, α ≈ 0.63 for the M = −4 → M = −3 tran-
sition (Fig. 3 of [24]). At T = 20(1)◦C the contribution of
spin exchange collisions to Γ02 evaluates to

�Γex

2π
= 1.6(2) Hz, (13)

where the error reflects the uncertainty in the number den-
sity. This value is compatible with the experimental value
Γ02 − Γ01 = (2π)1.35(3) Hz. We are therefore confident
that dephasing spin exchange collisions give the main con-
tribution to the transverse relaxation rate, notwithstanding
a certain scatter of the spin exchange cross sections in the
literature.
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5.4 Fundamental limits of magnetometric sensitivity

The ultimate sensitivity of the type of magnetometers de-
scribed here is limited by two fundamental processes, viz.,
photon shot noise limit and spin projection noise [25]. One
can show (Appendix A) that the minimal NEM imposed by
the shot noise of the detected photons is given by

δBPSN
NEM = 2

√
2Γ2

γF

√
Γ2

Γ1

1

κ0L

1

AFF ′ 〈Fz〉

√
hν

QEPLt
, (14)

where PL is the power detected after the cell, QE the quan-
tum efficiency of the photodiode for photons of energy hν,
and κ0 the resonant absorption coefficient of the driven hy-
perfine component for unpolarized atoms. For a time inter-
val of t = 0.5 s, the result corresponds to a measurement
bandwidth of 1 Hz. In (14), 〈Fz〉 is the spin longitudinal ori-
entation

〈Fz〉 =
4∑

M=−4

p4,MM, (15)

in the F = 4 state, where the p4,M are the populations of
the magnetic sublevels |F = 4,M〉. The analyzing power for
the transition F→F ′, AFF ′ , is discussed in Appendix A. It
is a slowly varying function in the domain of laser powers
considered here, with a numerically evaluated value A43 =
1.15(5).

For our apparatus, κ0L ≈ 0.7, QE = 0.7, so the above can
be rewritten as

δBPSN
NEM(fT) = 0.146

A43〈Fz〉√PL(μW)
Γ2

√
Γ2

Γ1
. (16)

For our best cell, A43〈Fz〉 = 0.39(4), Γ1/2π = 3.40 Hz, and
Γ2/2π = 4.75 Hz at the optimum laser power of 3.6 µW,
which yields an expected sensitivity of δBPSN

NEM = 7.0(7) fT,
to be compared with the measured minimal NEM of the cell
of 9(1) fT. For a more typical cell with Γ2/2π = 10 Hz,
Γ1/2π = 8.65 Hz, and A43〈Fz〉 = 0.46(5) at the optimal
power of 5 μW, the expected minimal NEM is δBPSN

NEM =
9.6(1.0) fT, indicating that the shot noise limited NEM
grows less than linearly in Γ2.

Spin projection noise limits the magnetometric sensitiv-
ity to

δBSPN
NEM = 1

γF

√
Γ2

Nattmeas
, (17)

where Nat = 9
16ρatVcell is the number of atoms in the F = 4

state that contribute to the signal, with ρat being the total
Cs number density, and Vcell the cell volume. For a mea-
surement time tmeas of 0.5 s, one finds at T = 20(1)◦C,

δBSPN
NEM = 0.74(2) fT for Γ2/2π = 4.75 Hz. In our magne-

tometers, spin projection noise thus has a negligible contri-
bution.

6 Summary and conclusion

We have manufactured and characterized a set of 253
paraffin-coated Cs vapor cells of identical geometry (28 mm
inner diameter spheres), 90% of which have an intrinsic
transverse relaxation rate in the range of 2 to 6 Hz. Under
optimized conditions of laser and rf power those cells have
intrinsic magnetometric sensitivities, δBmin

NEM, in the range of
9 to 30 fT/

√
Hz under the assumption of (light) shot-noise

limited operation in a DROM-type magnetometer.
The magnetometric sensitivity is determined by the in-

trinsic transverse relaxation rate, which, for the best cell of
our batch has a value of 2π · 2 Hz, of which ≈0.5 Hz are
due to reservoir (T1) relaxation, and ≈1.5 Hz are due to spin
exchange relaxation. Improving the relaxation properties by
reducing reservoir relaxation is technologically demanding,
and would only marginally improve the overall sensitivity.
Spin exchange relaxation, on the other hand, cannot be sup-
pressed in coated cells, although it was shown that spin ex-
change relaxation can be suppressed in high pressure buffer
gas cells, yielding sub-fT magnetometric sensitivity [26].
We thus conclude that our cells are as good as coated cells of
that diameter can be, disregarding a possible 25% reduction
of Γ02/2π by a suppression of reservoir losses.

The expected photon shot noise limited NEM of our cells
is very close to the measured NEM. The most promising im-
provement in sensitivity is expected to come from maximiz-
ing 〈Fz〉 via hyperfine repumping, which could win, at most,
a factor of 2–3.

It is well known that in the spin exchange limited regime
an increase of the atomic density by heating the cell does not
increase the magnetometric sensitivity, since Γ1, Γ2 and κ0

in (14) grow proportionally to the density. The same holds
for Γ2 and Natom in (17). However, when operating the mag-
netometer in a regime where spin exchange is not the limit-
ing factor, one expects an improvement of the sensitivity by
increasing the atomic number density.

We will use the cells in multi-sensor applications in fun-
damental and applied fields of research. Since an optimal
magnetometric sensitivity is reached with a typical light
power of approximately 5 µW, a single diode laser can
drive hundreds of individual sensors [13]. This scalability,
together with the very good reproducibility of the coated
cell quality reported here, will allow us to realize in the
near future a three-dimensional array of 25 individual sen-
sors for imaging the magnetic field of the beating human
heart, a signal with a peak amplitude 100 pT [10, 13, 27].
With a reliable and inexpensive multichannel heart measure-
ment system, magnetocardiograms can be measured in a few
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minutes, times which are of interest in the real world of clin-
ical applications.
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Appendix A: Photon shot noise limit

Consider a light beam of power Pin traversing a vapor of
thickness L. The transmitted power detected by a photodi-
ode with quantum efficiency QE is given by

Pdet(t) = QEPine
−κ(t)L = QEPL. (18)

The time dependent absorption coefficient κ(t) considering
the in-phase component of the magnetic-resonance induced
modulation is

κ(t) = κ0

(
1 − AFF ′ 〈Fz〉 Ωrfδ

δ2 + Γ 2
2 + Γ2

Γ1
Ω2

rf

cosωt

)
, (19)

where κ0 is the resonant optical absorption coefficient for a
sample of unpolarized atoms. The contrast of the magnetic
resonance signal, i.e., the ratio of the power modulation in-
duced by the rf-field and the absorbed power depends on the
degree of spin orientation Pz [1], itself proportional to 〈Fz〉.
The combined proportionality constant, denoted by the ana-
lyzing power AFF ′ , depends on F and F ′ as well as on laser
intensity. While it is straightforward to derive an algebraic
expression for AFF ′ in the case of simple transitions, such as
F = 1/2 → F ′ = 1/2, it is not for larger angular momenta.
We have derived algebraic expressions for the light intensity
dependence of AF,F ′ using the formalism of irreducible ten-
sor operators. These expressions reproduce very well exper-
imental observations and will be addressed in a forthcoming
publication [28]. Lock-in detection extracts from (18) the
rms value

P LIA
det = 1√

2
QEPine

−κ0L κ0LAFF ′ 〈Fz〉

× Ωrfδ

δ2 + Γ 2
2 + Γ2

Γ1
Ω2

rf

(20)

of the in-phase component of the power modulation.
Light power P can be converted to a photon count N

seen during time t via N = P t
hν

, for ν the photon frequency.
Hence, NLIA

det represents the number of photons carrying
magnetometric information, thus

dNLIA
det

dB
= dNLIA

det

dP LIA
det

dP LIA
det

dδ

dδ

dB
, (21)

which evaluates to

dNLIA
det

dB
= 1√

2
κ0Le−κ0L NinQEAFF ′ 〈Fz〉 γF

2Γ2

√
Γ1

Γ2
, (22)

assuming an rf amplitude (Ωrf = √
Γ2Γ1) which maximizes

the result.
The photon shot noise limited magnetometric sensitivity

is given by

δBPSN
NEM =

√
NDC

det

(
dNLIA

det

dB

)−1

, (23)

where

NDC
det = 〈

QENine
−κ(t)L

〉
t
= QENine

−κ0L. (24)

Assembling the above components gives

δBPSN
NEM = 2

√
2Γ2

γF

√
Γ2

Γ1

1

κ0L

1

AFF ′ 〈Fz〉

√
hν

QEPLt
, (25)

which is the required result.
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