2,919 research outputs found

    Nanosatellite fabrication and analysis

    Get PDF
    The advancements in technologies used in the aerospace industry have allowed universities to experiment with and develop small-scale satellites. Universities are taking advantage of the relatively low development costs of nanosatellite programs to give students experience in the field of spacecraft design. The purpose of Santa Clara University\u27s team, Nanosatellite Fabrication and Analysis, is to create a process to expedite the design, analysis, and fabrication phase of nanosatellite structures for students working on future satellite missions. The objective is to design four baseline nanosatellite structures to accommodate a range of potential missions where the designs are simple enough to be completely fabricated by students utilizing only the tools found in the Santa Clara University\u27s machine lab. Finite element analysis is conducted to ensure the designs meet NASA standards for natural frequency and that it can survive the forces it is subjected to during a launch. SatTherm, an easy to use thermal analysis tool for small spacecrafts, was used to conduct initial thermal simulations of the nanosatellite to determine the type of thermal components that will work for future missions. The success of team Nanosatellite Fabrication and Analysis proves that students can fabricate the structural frame of a nanosatellite using only the tools available in SCU\u27s machine lab

    Deploying quantum light sources on nanosatellites II: lessons and perspectives on CubeSat spacecraft

    Full text link
    To enable space-based quantum key distribution proposals the Centre for Quantum Technologies is developing a source of entangled photons ruggedized to survive deployment in space and greatly miniaturised so that it conforms to the strict form factor and power requirements of a 1U CubeSat. The Small Photon Entangling Quantum System is an integrated instrument where the pump, photon pair source and detectors are combined within a single optical tray and electronics package that is no larger than 10 cm x 10 cm x 3 cm. This footprint enables the instrument to be placed onboard nanosatellites or the CubeLab structure aboard the International Space Station. We will discuss the challenges and future prospects of CubeSat-based missions.Comment: Submitted to SPIE Quantum Information Science and Technology. Paper number 9648-4

    Nonlinear buckling and folding analysis of a storable tubular ultrathin boom for nanosatellites

    Get PDF
    In this work we investigated the stability behavior and the folding capability of an ultrathin tubular composite boom with C-cross section to be used in nanosatellites applications. A nonlinear buckling analysis was performed using the Riks method, adopting a perturbed finite element model to study the influence of the unavoidable geometrical variations of the boom thickness, arising from the composite manufacturing processes, on the stability behavior of the tubular structure. The effect of several levels of geometrical imperfection on the buckling behavior was analyzed. The minimum coil radius that can be used for a safe storage the boom was determined by quasi-static explicit analysis. The boom folding process was considered as formed by two sequential steps, the flattening and the coiling. The stress fields associated with both steps were investigated

    Space qualified nanosatellite electronics platform for photon pair experiments

    Full text link
    We report the design and implementation of a complete electronics platform for conducting a quantum optics experiment that will be operated on board a 1U CubeSat (a 10 x 10 x 10 cm satellite). The quantum optics experiment is designed to produce polarization-entangled photon pairs using non-linear optical crystals and requires opto-electronic components such as a pump laser, single photon detectors and liquid crystal based polarization rotators in addition to passive optical elements. The platform provides mechanical support for the optical assembly. It also communicates autonomously with the host satellite to provide experiment data for transmission to a ground station. A limited number of commands can be transmitted from ground to the platform enabling it to switch experimental modes. This platform requires less than 1.5W for all operations, and is space qualified. The implementation of this electronics platform is a major step on the road to operating quantum communication experiments using nanosatellites.Comment: 6 pages, 11 figure
    • …