3,093 research outputs found

    Interferometric detection and enumeration of viral particles using Si-based microfluidics

    Full text link
    Single-particle interferometric reflectance imaging sensor enables optical visualization and characterization of individual nanoparticles without any labels. Using this technique, we have shown end-point and real-time detection of viral particles using laminate-based active and passive cartridge configurations. Here, we present a new concept for low-cost microfluidic integration of the sensor chips into compact cartridges through utilization of readily available silicon fabrication technologies. This new cartridge configuration will allow simultaneous detection of individual virus binding events on a 9-spot microarray, and provide the needed simplicity and robustness for routine real-time operation for discrete detection of viral particles in a multiplex format.This work was supported in part by a research contract with the ASELSAN Research Center, Ankara, Turkey, and in part by the European Union's Horizon 2020 FET Open program under Grant 766466-INDEX. (ASELSAN Research Center, Ankara, Turkey; 766466-INDEX - European Union's Horizon 2020 FET Open program)First author draf

    Monolithic Integration of a Plasmonic Sensor with CMOS Technology

    Get PDF
    Monolithic integration of nanophotonic sensors with CMOS detectors can transform the laboratory based nanophotonic sensors into practical devices with a range of applications in everyday life. In this work, by monolithically integrating an array of gold nanodiscs with the CMOS photodiode we have developed a compact and miniaturized nanophotonic sensor system having direct electrical read out. Doing so eliminates the need of expensive and bulky laboratory based optical spectrum analyzers used currently for measurements of nanophotonic sensor chips. The experimental optical sensitivity of the gold nanodiscs is measured to be 275 nm/RIU which translates to an electrical sensitivity of 5.4 V/RIU. This integration of nanophotonic sensors with the CMOS electronics has the potential to revolutionize personalized medical diagnostics similar to the way in which the CMOS technology has revolutionized the electronics industry

    The Boston University Photonics Center annual report 2014-2015

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2014-2015 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has been a good year for the Photonics Center. In the following pages, you will see that the center’s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted $18.6M in new research grants/contracts. Faculty and staff also expanded their efforts in education and training, and were awarded two new National Science Foundation– sponsored sites for Research Experiences for Undergraduates and for Teachers. As a community, we hosted a compelling series of distinguished invited speakers, and emphasized the theme of Advanced Materials by Design for the 21st Century at our annual symposium. We continued to support the National Photonics Initiative, and are a part of a New York–based consortium that won the competition for a new photonics- themed node in the National Network of Manufacturing Institutes. Highlights of our research achievements for the year include an ambitious new DoD-sponsored grant for Multi-Scale Multi-Disciplinary Modeling of Electronic Materials led by Professor Enrico Bellotti, continued support of our NIH-sponsored Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Catherine Klapperich, a new award for Personalized Chemotherapy Through Rapid Monitoring with Wearable Optics led by Assistant Professor Darren Roblyer, and a new award from DARPA to conduct research on Calligraphy to Build Tunable Optical Metamaterials led by Professor Dave Bishop. We were also honored to receive an award from the Massachusetts Life Sciences Center to develop a biophotonics laboratory in our Business Innovation Center

    Devices and architectures for large scale integrated silicon photonics circuits

    Get PDF
    We present DWDM nanophotonics architectures based on microring resonator modulators and detectors. We focus on two implementations: an on chip interconnect for multicore processor (Corona) and a high radix network switch (HyperX). Based on the requirements of these applications we discuss the key constraints on the photonic circuits' devices and fabrication techniques as well as strategies to improve their performance

    The Boston University Photonics Center annual report 2014-2015

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2014-2015 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has been a good year for the Photonics Center. In the following pages, you will see that the center’s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted $18.6M in new research grants/contracts. Faculty and staff also expanded their efforts in education and training, and were awarded two new National Science Foundation– sponsored sites for Research Experiences for Undergraduates and for Teachers. As a community, we hosted a compelling series of distinguished invited speakers, and emphasized the theme of Advanced Materials by Design for the 21st Century at our annual symposium. We continued to support the National Photonics Initiative, and are a part of a New York–based consortium that won the competition for a new photonics- themed node in the National Network of Manufacturing Institutes. Highlights of our research achievements for the year include an ambitious new DoD-sponsored grant for Multi-Scale Multi-Disciplinary Modeling of Electronic Materials led by Professor Enrico Bellotti, continued support of our NIH-sponsored Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Catherine Klapperich, a new award for Personalized Chemotherapy Through Rapid Monitoring with Wearable Optics led by Assistant Professor Darren Roblyer, and a new award from DARPA to conduct research on Calligraphy to Build Tunable Optical Metamaterials led by Professor Dave Bishop. We were also honored to receive an award from the Massachusetts Life Sciences Center to develop a biophotonics laboratory in our Business Innovation Center

    Spectroscopy and Biosensing with Optically Resonant Dielectric Nanostructures

    Full text link
    Resonant dielectric nanoparticles (RDNs) made of materials with large positive dielectric permittivity, such as Si, GaP, GaAs, have become a powerful platform for modern light science, enabling various fascinating applications in nanophotonics and quantum optics. In addition to light localization at the nanoscale, dielectric nanostructures provide electric and magnetic resonant responses throughout the visible and infrared spectrum, low dissipative losses and optical heating, low doping effect and absence of quenching, which are interesting for spectroscopy and biosensing applications. In this review, we present state-of-the-art applications of optically resonant high-index dielectric nanostructures as a multifunctional platform for light-matter interactions. Nanoscale control of quantum emitters and applications for enhanced spectroscopy including fluorescence spectroscopy, surface-enhanced Raman scattering (SERS), biosensing, and lab-on-a-chip technology are surveyed. We describe the theoretical background underlying these effects, overview realizations of specific resonant dielectric nanostructures and hybrid excitonic systems, and outlook the challenges in this field, which remain open to future research

    Optofluidic Distributed Feedback Dye Lasers

    Get PDF
    We review our recent work on poly(dimethylsiloxane) (PDMS)-based optofluidic dye lasers using a guided wave distributed feedback (DFB) cavity. We show experimental results of single-mode operation, an integrated laser array, multiple color dye lasing, mechanical and fluidic tuning, and monolithic integration with microfluidic circuits. Potential applications and future directions are discussed
    corecore