3 research outputs found

    Automata Modeling of Quorum Sensing for Nanocommunication Networks

    Get PDF
    Projecte final de carrera realitzat en col.laboraci贸 amb Broadband Wireless Networking Lab. Georgia Institute of Technology. AtlantaNanotechnology is enabling the development of devices in a scale ranging one to hundreds of nanometers. Communication between these devices underlying in the nanoscale greatly expands the possible applications, increasing the complexity and range of operation of the system. Several options for nanocommunications have been discovered and studied, and many of them take some natural mechanisms and processes as a model, or directly use di erent elements from nature to serve its purposes. For instance, in molecular communications, the information is encoded in tiny particles secreted by the emitter. In this work, a special case of molecular communications is studied and modeled. Quorum Sensing is a mechanism used by bacteria to sense their own population and coordinate or synchronize their actions, through the emission and sensing of molecules called autoinducers. The behavior of each bacterium involved featuring Quorum Sensing is modeled as an individual nite state automaton, capturing its course of action. Later, the design of a novel nanomachine that will include Quorum Sensing is presented, along with its applications. Mainly, Quorum Sensing will serve to synchronize the processes of a group of nanodevices, and this idea is developed to present \Collective Actuation Synchronization" and \Collective Actuation after Localized Sensing" nanomachines. Finally, these con gurations are implemented and simulated, and the results are later discussed

    Cooperative signal amplification for molecular communication in nanonetworks.

    Get PDF
    English: Nanotechnology is enabling the development of devices in a scale ranging from a few to hundreds of nanometers. Communication between these devices greatly expands the possible applications, increasing the complexity and range of operation of the system. In particular, the resulting nanocommunication networks (or nanonetworks) show great potential for applications in the biomedical field, in which diffusion-based molecular communication is regarded as a promising alternative to electromagnetic-based solutions due to the bio-stability and energy-related requirements of this scenario. In this new paradigm, the information is encoded into pulses of molecules that reach the receiver by means of diffusion. However, molecular signals suffer a significant amount of attenuation as they propagate through the medium, thus limiting the transmission range. In this work we propose, among others, a signal amplification scheme for molecular communication nanonetworks in which a group of emitters jointly transmits a given signal after achieving synchronization by means of Quorum Sensing. By using the proposed methodology, the transmission range is extended proportionally to the number of synchronized emitters. We also provide an analytical model of Quorum Sensing, validated through simulation. This model accounts for the activation threshold (which will eventually determine the resulting amplification level) and the delay of the synchronization process.Castellano: La nanotecnolog铆a permite el desarrollo de dispositivos en una escala que va de las unidades a centenares de nan贸metros. La comunicaci贸n entre estos dispositivos hace aumentar el n煤mero de aplicaciones posibles, ya que se mejora la complejidad y el rango de actuaci贸n del sistema. En concreto, las redes de nanocomunicaciones (o nanoredes) resultantes muestran un gran potencial cuando se trata de aplicaciones biom茅dicas, en las cuales la comunicaci贸n molecular basada en difusi贸n de part铆culas supera a las soluciones electromagn茅ticas cl谩sicas debido a las imposiciones energ茅ticas y de biocompatibilidad de este escenario. En este nuevo paradigma de comunicaci贸n, la informaci贸n se codifica en pulsos de mol茅culas que llegan al receptor gracias al fen贸meno de la difusi贸n. No obstante, las se帽ales moleculares son sometidas a una gran atenuaci贸n a medida que se propagan a trav茅s del medio, hecho que limita severamente el alcance o rango de transmisi贸n. En esta tesis se propone, entre otros, un esquema de amplificaci贸n de la se帽al para nanoredes de comunicaci贸n molecular, en el cual un grupo de emisores transmite una cierta se帽al de manera conjunta despu茅s de haberse sincronizado mediante la ejecuci贸n de Quorum Sensing. Con el m茅todo que proponemos, el alcance aumenta proporcionalmente al n煤mero de transmisores que se sincronizan. Adem谩s, proponemos un modelo anal铆tico de Quorum Sensing, el cual se valida mediante simulaci贸n. Dicho modelo permite calcular el nivel umbral de activaci贸n del conjunto (hecho que determina la amplificaci贸n resultante y el rango de transmisi贸n final) y el retardo que el proceso de sincronizaci贸n introduce.Catal脿: La nanotecnologia permet el desenvolupament de dispositius en una escala de unitats a centenars de nan貌metres. La comunicaci贸 entre aquests dispositius fa augmentar el nombre de possibles aplicacions, ja que es millora la complexitat i el rang d'actuaci贸 del sistema. En concret, les xarxes de nanocomunicacions (o nanoxarxes) resultants mostren un gran potencial quan ens referim a aplicacions biom猫diques, en les quals la comunicaci贸 molecular basada en difusi贸 de part铆cules supera a les solucions de caire electromagn猫tic degut a les imposicions energ猫tiques i de biocompatilitat d'aquest escenari. En aquest nou paradigma de comunicaci贸, la informaci贸 茅s codificada en polsos de mol猫cules que arriben al receptor gr脿cies al fenomen de la difusi贸. No obstant, els senyals moleculars s贸n sotmesos a una gran atenuaci贸 a mesura que es propaguen a trav茅s del medi, fet que limita severament el rang de transmissi贸. En aquesta tesi es proposa, entre d'altres, un esquema d'amplificaci贸 del senyal per a nanoxarxes de comunicaci贸 molecular, en el qual un grup d'emissors transmet un cert senyal de manera conjunta despr茅s d'haver-se sincronitzat executant Quorum Sensing. Amb el m猫tode que proposem, l'abast o rang de transmissi贸 augmenta proporcionalment al nombre d'emissors que se sincronitzen. A m茅s a m茅s, proposem un model anal铆tic de Quorum Sensing, el qual 茅s validat mitjan莽ant simulaci贸. Dit model permet calcular el nivell llindar d'activaci贸 del conjunt (que de fet determina l'amplificaci贸 resultant i el rang de transmissi贸 final) i el retard que el proc茅s de sincronitzaci贸 introdueix
    corecore