61,809 research outputs found

    Survey on Evaluation Methods for Dialogue Systems

    Get PDF
    In this paper we survey the methods and concepts developed for the evaluation of dialogue systems. Evaluation is a crucial part during the development process. Often, dialogue systems are evaluated by means of human evaluations and questionnaires. However, this tends to be very cost and time intensive. Thus, much work has been put into finding methods, which allow to reduce the involvement of human labour. In this survey, we present the main concepts and methods. For this, we differentiate between the various classes of dialogue systems (task-oriented dialogue systems, conversational dialogue systems, and question-answering dialogue systems). We cover each class by introducing the main technologies developed for the dialogue systems and then by presenting the evaluation methods regarding this class

    A Survey of Current Datasets for Vision and Language Research

    Full text link
    Integrating vision and language has long been a dream in work on artificial intelligence (AI). In the past two years, we have witnessed an explosion of work that brings together vision and language from images to videos and beyond. The available corpora have played a crucial role in advancing this area of research. In this paper, we propose a set of quality metrics for evaluating and analyzing the vision & language datasets and categorize them accordingly. Our analyses show that the most recent datasets have been using more complex language and more abstract concepts, however, there are different strengths and weaknesses in each.Comment: To appear in EMNLP 2015, short proceedings. Dataset analysis and discussion expanded, including an initial examination into reporting bias for one of them. F.F. and N.M. contributed equally to this wor

    How the agent’s gender influence users’ evaluation of a QA system

    Get PDF
    In this paper we present the results of a pilot study investigating the effects of agents’ gender-ambiguous vs. gender-marked look on the perceived interaction quality of a multimodal question answering system. Eight test subjects interacted with three system agents, each having a feminine, masculine or gender-ambiguous look. The subjects were told each agent was representing a differently configured system. In fact, they were interacting with the same system. In the end, the subjects filled in an evaluation questionnaire and participated in an in-depth qualitative interview. The results showed that the user evaluation seemed to be influenced by the agent’s gender look: the system represented by the feminine agent achieved on average the highest evaluation scores. On the other hand, the system represented by the gender-ambiguous agent was systematically lower rated. This outcome might be relevant for an appropriate agent look, especially since many designers tend to develop gender-ambiguous characters for interactive interfaces to match various users’ preferences. However, additional empirical evidence is needed in the future to confirm our findings

    Query-Based Summarization using Rhetorical Structure Theory

    Get PDF
    Research on Question Answering is focused mainly on classifying the question type and finding the answer. Presenting the answer in a way that suits the user’s needs has received little attention. This paper shows how existing question answering systems—which aim at finding precise answers to questions—can be improved by exploiting summarization techniques to extract more than just the answer from the document in which the answer resides. This is done using a graph search algorithm which searches for relevant sentences in the discourse structure, which is represented as a graph. The Rhetorical Structure Theory (RST) is used to create a graph representation of a text document. The output is an extensive answer, which not only answers the question, but also gives the user an opportunity to assess the accuracy of the answer (is this what I am looking for?), and to find additional information that is related to the question, and which may satisfy an information need. This has been implemented in a working multimodal question answering system where it operates with two independently developed question answering modules

    Improve and Implement an Open Source Question Answering System

    Get PDF
    A question answer system takes queries from the user in natural language and returns a short concise answer which best fits the response to the question. This report discusses the integration and implementation of question answer systems for English and Hindi as part of the open source search engine Yioop. We have implemented a question answer system for English and Hindi, keeping in mind users who use these languages as their primary language. The user should be able to query a set of documents and should get the answers in the same language. English and Hindi are very different when it comes to language structure, characters etc. We have implemented the Question Answer System so that it supports localization and improved Part of Speech tagging performance by storing the lexicon in the database instead of a file based lexicon. We have implemented a brill tagger variant for Part of Speech tagging of Hindi phrases and grammar rules for triplet extraction. We also improve Yioop’s lexical data handling support by allowing the user to add named entities. Our improvements to Yioop were then evaluated by comparing the retrieved answers against a dataset of answers known to be true. The test data for the question answering system included creating 2 indexes, 1 each for English and Hindi. These were created by configuring Yioop to crawl 200,000 wikipedia pages for each crawl. The crawls were configured to be domain specific so that English index consists of pages restricted to English text and Hindi index is restricted to pages with Hindi text. We then used a set of 50 questions on the English and Hindi systems. We recored, Hindi system to have an accuracy of about 55% for simple factoid questions and English question answer system to have an accuracy of 63%
    • 

    corecore