22,391 research outputs found
An Improved NSGA-II and its Application for Reconfigurable Pixel Antenna Design
Based on the elitist non-dominated sorting genetic algorithm (NSGA-II) for multi-objective optimization problems, an improved scheme with self-adaptive crossover and mutation operators is proposed to obtain good optimization performance in this paper. The performance of the improved NSGA-II is demonstrated with a set of test functions and metrics taken from the standard literature on multi-objective optimization. Combined with the HFSS solver, one pixel antenna with reconfigurable radiation patterns, which can steer its beam into six different directions (θDOA = ± 15°, ± 30°, ± 50°) with a 5 % overlapping impedance bandwidth (S11 < − 10 dB) and a realized gain over 6 dB, is designed by the proposed self-adaptive NSGA-II
Proposal and Comparative Study of Evolutionary Algorithms for Optimum Design of a Gear System
This paper proposes a novel metaheuristic framework using a Differential Evolution (DE) algorithm with the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Both algorithms are combined employing a collaborative strategy with sequential execution, which is called DE-NSGA-II. The DE-NSGA-II takes advantage of the exploration abilities of the multi-objective evolutionary algorithms strengthened with the ability to search global mono-objective optimum of DE, that enhances the capability of finding those extreme solutions of Pareto Optimal Front (POF) difficult to achieve. Numerous experiments and performance comparisons between different evolutionary algorithms were performed on a referent problem for the mono-objective and multi-objective literature, which consists of the design of a double reduction gear train. A preliminary study of the problem, solved in an exhaustive way, discovers the low density of solutions in the vicinity of the optimal solution (mono-objective case) as well as in some areas of the POF of potential interest to a decision maker (multi-objective case). This characteristic of the problem would explain the considerable difficulties for its resolution when exact methods and/or metaheuristics are used, especially in the multi-objective case. However, the DE-NSGA-II framework exceeds these difficulties and obtains the whole POF which significantly improves the few previous multi-objective studies.Fil: Méndez Babey, Máximo. Universidad de Las Palmas de Gran Canaria; EspañaFil: Rossit, Daniel Alejandro. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: González, Begoña. Universidad de Las Palmas de Gran Canaria; EspañaFil: Frutos, Mariano. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentin
A convergence acceleration operator for multiobjective optimisation
A novel multiobjective optimisation accelerator is
introduced that uses direct manipulation in objective space
together with neural network mappings from objective space to decision space. This operator is a portable component that can be hybridized with any multiobjective optimisation algorithm. The purpose of this Convergence Acceleration Operator (CAO) is to enhance the search capability and the speed of convergence of the host algorithm. The operator acts directly in objective space to suggest improvements to solutions obtained by a multiobjective evolutionary algorithm (MOEA). These suggested improved objective vectors are then mapped into decision variable space and tested. The CAO is incorporated with two leading MOEAs, the Non-Dominated Sorting Genetic Algorithm (NSGA-II) and the Strength Pareto Evolutionary Algorithm (SPEA2) and tested. Results show that the hybridized algorithms consistently improve the speed of convergence of the original algorithm whilst maintaining the desired distribution of solutions
Multiobjective synchronization of coupled systems
Copyright @ 2011 American Institute of PhysicsSynchronization of coupled chaotic systems has been a subject of great interest and importance, in theory but also various fields of application, such as secure communication and neuroscience. Recently, based on stability theory, synchronization of coupled chaotic systems by designing appropriate coupling has been widely investigated. However, almost all the available results have been focusing on ensuring the synchronization of coupled chaotic systems with as small coupling strengths as possible. In this contribution, we study multiobjective synchronization of coupled chaotic systems by considering two objectives in parallel, i. e., minimizing optimization of coupling strength and convergence speed. The coupling form and coupling strength are optimized by an improved multiobjective evolutionary approach. The constraints on the coupling form are also investigated by formulating the problem into a multiobjective constraint problem. We find that the proposed evolutionary method can outperform conventional adaptive strategy in several respects. The results presented in this paper can be extended into nonlinear time-series analysis, synchronization of complex networks and have various applications
Modeling and Optimal Design of Machining-Induced Residual Stresses in Aluminium Alloys Using a Fast Hierarchical Multiobjective Optimization Algorithm
The residual stresses induced during shaping and machining play an important role in determining the integrity and durability of metal components. An important issue of producing safety critical components is to find the machining parameters that create compressive surface stresses or minimise tensile surface stresses. In this paper, a systematic data-driven fuzzy modelling methodology is proposed, which allows constructing transparent fuzzy models considering both accuracy and interpretability attributes of fuzzy systems. The new method employs a hierarchical optimisation structure to improve the modelling efficiency, where two learning mechanisms cooperate together: NSGA-II is used to improve the model’s structure while the gradient descent method is used to optimise the numerical parameters. This hybrid approach is then successfully applied to the problem that concerns the prediction of machining induced residual stresses in aerospace aluminium alloys. Based on the developed reliable prediction models, NSGA-II is further applied to the multi-objective optimal design of aluminium alloys in a ‘reverse-engineering’ fashion. It is revealed that the optimal machining regimes to minimise the residual stress and the machining cost simultaneously can be successfully located
Minimizing the total tardiness and makespan in an open shop scheduling problem with sequence-dependent setup times
We consider an open shop scheduling problem with setup and processing times separately such that not only the setup times are dependent on the machines, but also they are dependent on the sequence of jobs that should be processed on a machine. A novel bi-objective mathematical programming is designed in order to minimize the total tardiness and the makespan. Among several multi-objective decision making (MODM) methods, an interactive one, called the TH method is applied for solving small-sized instances optimally and obtaining Pareto-optimal solutions by the Lingo software. To achieve Pareto-optimal sets for medium to large-sized problems, an improved non-dominated sorting genetic algorithm II (NSGA-II) is presented that consists of a heuristic method for obtaining a good initial population. In addition, by using the design of experiments (DOE), the efficiency of the proposed improved NSGA-II is compared with the efficiency of a well-known multi-objective genetic algorithm, namely SPEA-II. Finally, the performance of the improved NSGA-II is examined in a comparison with the performance of the traditional NSGA-II
Multiobjective genetic algorithm strategies for electricity production from generation IV nuclear technology
Development of a technico-economic optimization strategy of cogeneration systems of electricity/hydrogen, consists in finding an optimal efficiency of the generating cycle and heat delivery system, maximizing the energy production and minimizing the production costs. The first part of the paper is related to the development of a multiobjective optimization library (MULTIGEN) to tackle all types of problems arising from cogeneration. After a literature review for identifying the most efficient methods, the MULTIGEN library is described, and the innovative points are listed. A new stopping criterion, based on the stagnation of the Pareto front, may lead to significant decrease of computational times, particularly in the case of problems involving only integer variables. Two practical examples are presented in the last section. The former is devoted to a bicriteria optimization of both exergy destruction and total cost of the plant, for a generating cycle coupled with a Very High Temperature Reactor (VHTR). The second example consists in designing the heat exchanger of the generating turbomachine. Three criteria are optimized: the exchange surface, the exergy destruction and the number of exchange modules
- …
