5 research outputs found

    Improvements in Speed and Functionality of a 670-GHz Imaging Radar

    Get PDF
    Significant improvements have been made in the instrument originally described in a prior NASA Tech Briefs article: Improved Speed and Functionality of a 580-GHz Imaging Radar (NPO-45156), Vol. 34, No. 7 (July 2010), p. 51. First, the wideband YIG oscillator has been replaced with a JPL-designed and built phase-locked, low-noise chirp source. Second, further refinements to the data acquisition and signal processing software have been performed by moving critical code sections to C code, and compiling those sections to Windows DLLs, which are then invoked from the main LabVIEW executive. This system is an active, single-pixel scanned imager operating at 670 GHz. The actual chirp signals for the RF and LO chains were generated by a pair of MITEQ 2.5 3.3 GHz chirp sources. Agilent benchtop synthesizers operating at fixed frequencies around 13 GHz were then used to up-convert the chirp sources to 15.5 16.3 GHz. The resulting signals were then multiplied 36 times by a combination of off-the-shelf millimeter- wave components, and JPL-built 200- GHz doublers and 300- and 600-GHz triplers. The power required to drive the submillimeter-wave multipliers was provided by JPL-built W-band amplifiers. The receive and transmit signal paths were combined using a thin, high-resistivity silicon wafer as a beam splitter. While the results at present are encouraging, the system still lacks sufficient speed to be usable for practical applications in a contraband detection. Ideally, an image acquisition speed of ten seconds, or a factor of 30 improvement, is desired. However, the system improvements to date have resulted in a factor of five increase in signal acquisition speed, as well as enhanced signal processing algorithms, permitting clearer imaging of contraband objects hidden underneath clothing. In particular, advances in three distinct areas have enabled these performance enhancements: base source phase noise reduction, chirp rate, and signal processing. Additionally, a second pixel was added, automatically reducing the imaging time by a factor of two. Although adding a second pixel to the system doubles the amount of submillimeter components required, some savings in microwave hardware can be realized by using a common low-noise source

    The Interplanetary Overlay Networking Protocol Accelerator

    Get PDF
    A document describes the Interplanetary Overlay Networking Protocol Accelerator (IONAC) an electronic apparatus, now under development, for relaying data at high rates in spacecraft and interplanetary radio-communication systems utilizing a delay-tolerant networking protocol. The protocol includes provisions for transmission and reception of data in bundles (essentially, messages), transfer of custody of a bundle to a recipient relay station at each step of a relay, and return receipts. Because of limitations on energy resources available for such relays, data rates attainable in a conventional software implementation of the protocol are lower than those needed, at any given reasonable energy-consumption rate. Therefore, a main goal in developing the IONAC is to reduce the energy consumption by an order of magnitude and the data-throughput capability by two orders of magnitude. The IONAC prototype is a field-programmable gate array that serves as a reconfigurable hybrid (hardware/ firmware) system for implementation of the protocol. The prototype can decode 108,000 bundles per second and encode 100,000 bundles per second. It includes a bundle-cache static randomaccess memory that enables maintenance of a throughput of 2.7Gb/s, and an Ethernet convergence layer that supports a duplex throughput of 1Gb/s

    On-Orbit Multi-Field Wavefront Control with a Kalman Filter

    Get PDF
    A document describes a multi-field wavefront control (WFC) procedure for the James Webb Space Telescope (JWST) on-orbit optical telescope element (OTE) fine-phasing using wavefront measurements at the NIRCam pupil. The control is applied to JWST primary mirror (PM) segments and secondary mirror (SM) simultaneously with a carefully selected ordering. Through computer simulations, the multi-field WFC procedure shows that it can reduce the initial system wavefront error (WFE), as caused by random initial system misalignments within the JWST fine-phasing error budget, from a few dozen micrometers to below 50 nm across the entire NIRCam Field of View, and the WFC procedure is also computationally stable as the Monte-Carlo simulations indicate. With the incorporation of a Kalman Filter (KF) as an optical state estimator into the WFC process, the robustness of the JWST OTE alignment process can be further improved. In the presence of some large optical misalignments, the Kalman state estimator can provide a reasonable estimate of the optical state, especially for those degrees of freedom that have a significant impact on the system WFE. The state estimate allows for a few corrections to the optical state to push the system towards its nominal state, and the result is that a large part of the WFE can be eliminated in this step. When the multi-field WFC procedure is applied after Kalman state estimate and correction, the stability of fine-phasing control is much more certain. Kalman Filter has been successfully applied to diverse applications as a robust and optimal state estimator. In the context of space-based optical system alignment based on wavefront measurements, a KF state estimator can combine all available wavefront measurements, past and present, as well as measurement and actuation error statistics to generate a Maximum-Likelihood optimal state estimator. The strength and flexibility of the KF algorithm make it attractive for use in real-time optical system alignment when WFC alone cannot effectively align the system

    IONAC-Lite

    Get PDF
    The Interplanetary Overlay Net - working Protocol Accelerator (IONAC) described previously in The Inter - planetary Overlay Networking Protocol Accelerator (NPO-45584), NASA Tech Briefs, Vol. 32, No. 10, (October 2008) p. 106 (http://www.techbriefs.com/component/ content/article/3317) provides functions that implement the Delay Tolerant Networking (DTN) bundle protocol. New missions that require high-speed downlink-only use of DTN can now be accommodated by the unidirectional IONAC-Lite to support high data rate downlink mission applications. Due to constrained energy resources, a conventional software implementation of the DTN protocol can provide only limited throughput for any given reasonable energy consumption rate. The IONAC-Lite DTN Protocol Accelerator is able to reduce this energy consumption by an order of magnitude and increase the throughput capability by two orders of magnitude. In addition, a conventional DTN implementation requires a bundle database with a considerable storage requirement. In very high downlink datarate missions such as near-Earth radar science missions, the storage space utilization needs to be maximized for science data and minimized for communications protocol-related storage needs. The IONAC-Lite DTN Protocol Accelerator is implemented in a reconfigurable hardware device to accomplish exactly what s needed for high-throughput DTN downlink-only scenarios. The following are salient features of the IONAC-Lite implementation: An implementation of the Bundle Protocol for an environment that requires a very high rate bundle egress data rate. The C&DH (command and data handling) subsystem is also expected to be very constrained so the interaction with the C&DH processor and the temporary storage are minimized. Fully pipelined design so that bundle processing database is not required. Implements a lookup table-based approach to eliminate multi-pass processing requirement imposed by the Bundle Protocol header s length field structure and the SDNV (self-delimiting numeric value) data field formatting. 8-bit parallel datapath to support high data-rate missions. Reduced resource utilization implementation for missions that do not require custody transfer features. There was no known implementation of the DTN protocol in a field programmable gate array (FPGA) device prior to the current implementation. The combination of energy and performance optimization that embodies this design makes the work novel

    NASA Tech Briefs, August 2011

    Get PDF
    Topics covered include: Miniature, Variable-Speed Control Moment Gyroscope; NBL Pistol Grip Tool for Underwater Training of Astronauts; HEXPANDO Expanding Head for Fastener-Retention Hexagonal Wrench; Diagonal-Axes Stage for Pointing an Optical Communications Transceiver; Improvements in Speed and Functionality of a 670-GHz Imaging Radar; IONAC-Lite; Large Ka-Band Slot Array for Digital Beam-Forming Applications; Development of a 150-GHz MMIC Module Prototype for Large-Scale CMB Radiation; Coupling Between Waveguide-Fed Slot Arrays; PCB-Based Break-Out Box; Multiple-Beam Detection of Fast Transient Radio Sources; Router Agent Technology for Policy-Based Network Management; Remote Asynchronous Message Service Gateway; Automatic Tie Pointer for In-Situ Pointing Correction; Jitter Correction; MSLICE Sequencing; EOS MLS Level 2 Data Processing Software Version 3; DspaceOgre 3D Graphics Visualization Tool; Metallization for Yb14MnSb11-Based Thermoelectric Materials; Solvent/Non-Solvent Sintering To Make Microsphere Scaffolds; Enhanced Fuel-Optimal Trajectory-Generation Algorithm for Planetary Pinpoint Landing; Self-Cleaning Coatings and Materials for Decontaminating Field-Deployable Land and Water-Based Optical Systems; Separation of Single-Walled Carbon Nanotubes with DEP-FFF; Li Anode Technology for Improved Performance; Post-Fragmentation Whole Genome Amplification-Based Method; Microwave Tissue Soldering for Immediate Wound Closure; Principles, Techniques, and Applications of Tissue Microfluidics; Robotic Scaffolds for Tissue Engineering and Organ Growth; Stress-Driven Selection of Novel Phenotypes; Method for Accurately Calibrating a Spectrometer Using Broadband Light; Catalytic Microtube Rocket Igniter; Stage Cylindrical Immersive Display; Vacuum Camera Cooler; Atomic Oxygen Fluence Monitor; Thermal Management Tools for Propulsion System Trade Studies and Analysis; Introduction to Physical Intelligence; Technique for Solving Electrically Small to Large Structures for Broadband Applications; Accelerated Adaptive MGS Phase Retrieval; Large Eddy Simulation Study for Fluid Disintegration and Mixing; Tropospheric Correction for InSAR Using Interpolated ECMWF Data and GPS Zenith Total Delay; Technique for Calculating Solution Derivatives With Respect to Geometry Parameters in a CFD Code; Acute Radiation Risk and BRYNTRN Organ Dose Projection Graphical User Interface; Probabilistic Path Planning of Montgolfier Balloons in Strong, Uncertain Wind Fields; Flight Simulation of ARES in the Mars Environment; Low-Outgassing Photogrammetry Targets for Use in Outer Space; Planning the FUSE Mission Using the SOVA Algorithm; Monitoring Spacecraft Telemetry Via Optical or RF Link; and Robust Thermal Control of Propulsion Lines for Space Missions
    corecore