6,761 research outputs found

    Stochastic Vehicle Routing with Recourse

    Full text link
    We study the classic Vehicle Routing Problem in the setting of stochastic optimization with recourse. StochVRP is a two-stage optimization problem, where demand is satisfied using two routes: fixed and recourse. The fixed route is computed using only a demand distribution. Then after observing the demand instantiations, a recourse route is computed -- but costs here become more expensive by a factor lambda. We present an O(log^2 n log(n lambda))-approximation algorithm for this stochastic routing problem, under arbitrary distributions. The main idea in this result is relating StochVRP to a special case of submodular orienteering, called knapsack rank-function orienteering. We also give a better approximation ratio for knapsack rank-function orienteering than what follows from prior work. Finally, we provide a Unique Games Conjecture based omega(1) hardness of approximation for StochVRP, even on star-like metrics on which our algorithm achieves a logarithmic approximation.Comment: 20 Pages, 1 figure Revision corrects the statement and proof of Theorem 1.

    Observer Placement for Source Localization: The Effect of Budgets and Transmission Variance

    Get PDF
    When an epidemic spreads in a network, a key question is where was its source, i.e., the node that started the epidemic. If we know the time at which various nodes were infected, we can attempt to use this information in order to identify the source. However, maintaining observer nodes that can provide their infection time may be costly, and we may have a budget kk on the number of observer nodes we can maintain. Moreover, some nodes are more informative than others due to their location in the network. Hence, a pertinent question arises: Which nodes should we select as observers in order to maximize the probability that we can accurately identify the source? Inspired by the simple setting in which the node-to-node delays in the transmission of the epidemic are deterministic, we develop a principled approach for addressing the problem even when transmission delays are random. We show that the optimal observer-placement differs depending on the variance of the transmission delays and propose approaches in both low- and high-variance settings. We validate our methods by comparing them against state-of-the-art observer-placements and show that, in both settings, our approach identifies the source with higher accuracy.Comment: Accepted for presentation at the 54th Annual Allerton Conference on Communication, Control, and Computin

    Sticky Seeding in Discrete-Time Reversible-Threshold Networks

    Get PDF
    When nodes can repeatedly update their behavior (as in agent-based models from computational social science or repeated-game play settings) the problem of optimal network seeding becomes very complex. For a popular spreading-phenomena model of binary-behavior updating based on thresholds of adoption among neighbors, we consider several planning problems in the design of \textit{Sticky Interventions}: when adoption decisions are reversible, the planner aims to find a Seed Set where temporary intervention leads to long-term behavior change. We prove that completely converting a network at minimum cost is Ω(ln(OPT))\Omega(\ln (OPT) )-hard to approximate and that maximizing conversion subject to a budget is (11e)(1-\frac{1}{e})-hard to approximate. Optimization heuristics which rely on many objective function evaluations may still be practical, particularly in relatively-sparse networks: we prove that the long-term impact of a Seed Set can be evaluated in O(E2)O(|E|^2) operations. For a more descriptive model variant in which some neighbors may be more influential than others, we show that under integer edge weights from {0,1,2,...,k}\{0,1,2,...,k\} objective function evaluation requires only O(kE2)O(k|E|^2) operations. These operation bounds are based on improvements we give for bounds on time-steps-to-convergence under discrete-time reversible-threshold updates in networks.Comment: 19 pages, 2 figure
    corecore