7,639 research outputs found

    On the frontiers of polynomial computations in tropical geometry

    Full text link
    We study some basic algorithmic problems concerning the intersection of tropical hypersurfaces in general dimension: deciding whether this intersection is nonempty, whether it is a tropical variety, and whether it is connected, as well as counting the number of connected components. We characterize the borderline between tractable and hard computations by proving NP\mathcal{NP}-hardness and #P\mathcal{P}-hardness results under various strong restrictions of the input data, as well as providing polynomial time algorithms for various other restrictions.Comment: 17 pages, 5 figures. To appear in Journal of Symbolic Computatio

    Counting Value Sets: Algorithm and Complexity

    Full text link
    Let pp be a prime. Given a polynomial in \F_{p^m}[x] of degree dd over the finite field \F_{p^m}, one can view it as a map from \F_{p^m} to \F_{p^m}, and examine the image of this map, also known as the value set. In this paper, we present the first non-trivial algorithm and the first complexity result on computing the cardinality of this value set. We show an elementary connection between this cardinality and the number of points on a family of varieties in affine space. We then apply Lauder and Wan's pp-adic point-counting algorithm to count these points, resulting in a non-trivial algorithm for calculating the cardinality of the value set. The running time of our algorithm is (pmd)O(d)(pmd)^{O(d)}. In particular, this is a polynomial time algorithm for fixed dd if pp is reasonably small. We also show that the problem is #P-hard when the polynomial is given in a sparse representation, p=2p=2, and mm is allowed to vary, or when the polynomial is given as a straight-line program, m=1m=1 and pp is allowed to vary. Additionally, we prove that it is NP-hard to decide whether a polynomial represented by a straight-line program has a root in a prime-order finite field, thus resolving an open problem proposed by Kaltofen and Koiran in \cite{Kaltofen03,KaltofenKo05}

    On the complexity of nonlinear mixed-integer optimization

    Full text link
    This is a survey on the computational complexity of nonlinear mixed-integer optimization. It highlights a selection of important topics, ranging from incomputability results that arise from number theory and logic, to recently obtained fully polynomial time approximation schemes in fixed dimension, and to strongly polynomial-time algorithms for special cases.Comment: 26 pages, 5 figures; to appear in: Mixed-Integer Nonlinear Optimization, IMA Volumes, Springer-Verla

    A Complete Characterization of the Gap between Convexity and SOS-Convexity

    Full text link
    Our first contribution in this paper is to prove that three natural sum of squares (sos) based sufficient conditions for convexity of polynomials, via the definition of convexity, its first order characterization, and its second order characterization, are equivalent. These three equivalent algebraic conditions, henceforth referred to as sos-convexity, can be checked by semidefinite programming whereas deciding convexity is NP-hard. If we denote the set of convex and sos-convex polynomials in nn variables of degree dd with C~n,d\tilde{C}_{n,d} and ΣC~n,d\tilde{\Sigma C}_{n,d} respectively, then our main contribution is to prove that C~n,d=ΣC~n,d\tilde{C}_{n,d}=\tilde{\Sigma C}_{n,d} if and only if n=1n=1 or d=2d=2 or (n,d)=(2,4)(n,d)=(2,4). We also present a complete characterization for forms (homogeneous polynomials) except for the case (n,d)=(3,4)(n,d)=(3,4) which is joint work with G. Blekherman and is to be published elsewhere. Our result states that the set Cn,dC_{n,d} of convex forms in nn variables of degree dd equals the set ΣCn,d\Sigma C_{n,d} of sos-convex forms if and only if n=2n=2 or d=2d=2 or (n,d)=(3,4)(n,d)=(3,4). To prove these results, we present in particular explicit examples of polynomials in C~2,6∖ΣC~2,6\tilde{C}_{2,6}\setminus\tilde{\Sigma C}_{2,6} and C~3,4∖ΣC~3,4\tilde{C}_{3,4}\setminus\tilde{\Sigma C}_{3,4} and forms in C3,6∖ΣC3,6C_{3,6}\setminus\Sigma C_{3,6} and C4,4∖ΣC4,4C_{4,4}\setminus\Sigma C_{4,4}, and a general procedure for constructing forms in Cn,d+2∖ΣCn,d+2C_{n,d+2}\setminus\Sigma C_{n,d+2} from nonnegative but not sos forms in nn variables and degree dd. Although for disparate reasons, the remarkable outcome is that convex polynomials (resp. forms) are sos-convex exactly in cases where nonnegative polynomials (resp. forms) are sums of squares, as characterized by Hilbert.Comment: 25 pages; minor editorial revisions made; formal certificates for computer assisted proofs of the paper added to arXi
    • …
    corecore