3 research outputs found

    Fast vocabulary acquisition in an NMF-based self-learning vocal user interface

    Get PDF
    AbstractIn command-and-control applications, a vocal user interface (VUI) is useful for handsfree control of various devices, especially for people with a physical disability. The spoken utterances are usually restricted to a predefined list of phrases or to a restricted grammar, and the acoustic models work well for normal speech. While some state-of-the-art methods allow for user adaptation of the predefined acoustic models and lexicons, we pursue a fully adaptive VUI by learning both vocabulary and acoustics directly from interaction examples. A learning curve usually has a steep rise in the beginning and an asymptotic ceiling at the end. To limit tutoring time and to guarantee good performance in the long run, the word learning rate of the VUI should be fast and the learning curve should level off at a high accuracy. In order to deal with these performance indicators, we propose a multi-level VUI architecture and we investigate the effectiveness of alternative processing schemes. In the low-level layer, we explore the use of MIDA features (Mutual Information Discrimination Analysis) against conventional MFCC features. In the mid-level layer, we enhance the acoustic representation by means of phone posteriorgrams and clustering procedures. In the high-level layer, we use the NMF (Non-negative Matrix Factorization) procedure which has been demonstrated to be an effective approach for word learning. We evaluate and discuss the performance and the feasibility of our approach in a realistic experimental setting of the VUI-user learning context

    NMF-based keyword learning from scarce data

    Get PDF
    This research is situated in a project aimed at the development of a vocal user interface (VUI) that learns to understand its users specifically persons with a speech impairment. The vocal interface adapts to the speech of the user by learning the vocabulary from interaction examples. Word learning is implemented through weakly supervised non-negative matrix factorization (NMF). The goal of this study is to investigate how we can improve word learning when the number of interaction examples is low. We demonstrate two approaches to train NMF models on scarce data: 1) training word models using smoothed training data, and 2) training word models that strictly correspond to the grounding information derived from a few interaction examples. We found that both approaches can substantially improve word learning from scarce training data. © 2013 IEEE.Ons B., Gemmeke J.F., Van hamme H., ''NMF-based keyword learning from scarce data'', Automatic speech recognition and understanding workshop - ASRU 2013, pp. 392-397, December 8-12, 2013, Olomouc, Czech Republic.status: publishe

    NMF-based keyword learning from scarce data

    No full text
    corecore