13 research outputs found

    Forgery Attacks on FlexAE and FlexAEAD

    Get PDF
    FlexAEAD is one of the round-1 candidates in the ongoing NIST Lightweight Cryptography standardization project. In this note, we show several forgery attacks on FlexAEAD with complexity less than the security bound given by the designers, such as a block reordering attack on full FlexAEAD-128 with estimated success probability about 2−542^{-54}. Additionally, we show some trivial forgeries and point out domain separation issues

    Forgery Attack on mixFeed in the Nonce-Misuse Scenario

    Get PDF
    mixFeed [CN19] is a round 1 candidate for the NIST Lightweight Cryptography Standardization Project. It is a single-pass, nonce-based, AES-based authenticated encryption algorithms. The authors claim that while there are no guarantees for security in terms of confidentiality in case of nonce-misuse (repetition), the integrity security still holds up to 2^32 data complexity. In this report, this claim is not true in case the plaintext length is non-zero (≥ 16 bytes to be exact). We show a forgery attack that requires only two encryption queries with the same nonce and 34 bytes of data

    Matching Attacks on Romulus-M

    Get PDF
    This paper considers a problem of identifying matching attacks against Romulus-M, one of the ten finalists of NIST Lightweight Cryptography standardization project. Romulus-M is provably secure, i.e., there is a theorem statement showing the upper bound on the success probability of attacking the scheme as a function of adversaries\u27 resources. If there exists an attack that matches the provable security bound, then this implies that the attack is optimal, and that the bound is tight in the sense that it cannot be improved. We show that the security bounds of Romulus-M are tight for a large class of parameters by presenting concrete matching attacks

    CCA Security with Short AEAD Tags

    Get PDF
    The size of the authentication tag represents a significant overhead for applications that are limited by bandwidth or memory. Hence, some authenticated encryption designs have a smaller tag than the required privacy level, which was also suggested by the NIST lightweight cryptography standardization project. In the ToSC 2022, two papers have raised questions about the IND-CCA security of AEAD schemes in this situation. These papers show that (a) online AE cannot provide IND-CCA security beyond the tag length, and (b) it is possible to have IND-CCA security beyond the tag length in a restricted Encrypt-then-Encipher framework. In this paper, we address some of the remaining gaps in this area. Our main result is to show that, for a fixed stretch, Pseudo-Random Injection security implies IND-CCA security as long as the minimum ciphertext size is at least as large as the required IND-CCA security level. We also show that this bound is tight and that any AEAD scheme that allows empty plaintexts with a fixed stretch cannot achieve IND-CCA security beyond the tag length. Next, we look at the weaker notion of MRAE security, and show that two-pass schemes that achieve MRAE security do not achieve IND-CCA security beyond the tag size. This includes SIV and rugged PRPs

    Design and Cryptanalysis of Lightweight Symmetric Key Primitives

    Get PDF
    The need for lightweight cryptographic primitives to replace the traditional standardized primitives such as AES, SHA-2 and SHA-3, which are unrealistic in constrained environments, has been anticipated by the cryptographic community for over a decade and half. Such an anticipation came to reality by the apparent proliferation of Radio Frequency Identifiers (RFIDs), Internet of Things (IoT), smart devices and sensor networks in our daily lives. All these devices operate in constrained environments and require reasonable efficiency with low implementation costs and sufficient security. Accordingly, designing lightweight symmetric key cryptographic primitives and analyzing the state-of-the-art algorithms is an active area of research for both academia and industry, which is directly followed by the ongoing National Institute of Standards and Technology’s lightweight cryptography (NIST LWC) standardization project. In this thesis, we focus on the design and security analysis of such primitives. First, we present the design of four lightweight cryptographic permutations, namely sLiSCP, sLiSCP-light, ACE and WAGE. At a high level, these permutations adopt a Nonlinear Feedback Shift Register (NLFSR) based design paradigm. sLiSCP, sLiSCP-light and ACE use reduced-round Simeck block cipher, while WAGE employs Welch-Gong (WG) permutation and two 7-bit sboxes over the finite field F27F_{2^7} as their underlying nonlinear components. We discuss their design rationale and analyze the security with respect to differential and linear, integral and symmetry based distinguishers using automated tools such as Mixed Integer Linear Programming (MILP) and SAT/SMT solvers. Second, we show the applications of these permutations to achieve Authenticated Encryption with Associated Data (AEAD), Message Authentication Code (MAC), Pseudorandom Bit Generator (PRBG) and Hash functionalities. We introduce the idea of the unified round function, which, when combined in a sponge mode can provide all the aforementioned functionalities with the same circuitry. We give concrete instantiations of several AEAD and hash schemes with varying security levels, e.g., 80, 96, 112 and 128 bits. Next, we present Spoc, a new AEAD mode of operation which offers higher security guarantees compared to traditional sponge-based AEAD schemes with smaller states. We instantiate Spoc with sLiSCP-light permutation and propose another two lightweight AEAD algorithms. Notably, 4 of our proposed schemes, namely ACE, Spix, Spoc and WAGE are round 2 candidates of NIST’s LWC project. Finally, we present cryptanalytic results on some lightweight ciphers. We first analyze the nonlinear initialization phase of WG-5 stream cipher using the division property based cube attack, and give a key recovery attack on 24 (out of 64) rounds with data and time complexities 26.322^{6.32} and 276:812^{76:81}, respectively. Next, we propose a novel property of block ciphers called correlated sequences and show its applications to meet-in-the-middle attack. Consequently, we give the best key recovery attacks (up to 27 out of 32 rounds in a single key setting) on Simon and Simeck ciphers with block and key sizes 32 and 64 bits, respectively. The attack requires 3 known plaintext-ciphertext pairs and has a time complexity close to average exhaustive search. It is worth noting that variants of WG-5 and Simeck are the core components of aforementioned AEAD and hash schemes. Lastly, we present practical forgery attacks on Limdolen and HERN which are round 1 candidates of NIST LWC project. We show the existence of structural weaknesses which could be exploited to forge any message with success probability of 1. For Limdolen, we require the output of a single encryption query while for HERN we need at most 4 encryption queries for a valid forgery. Following our attack, both designs are eliminated from second round

    A Fast and Compact RISC-V Accelerator for Ascon and Friends

    Get PDF
    Ascon-p is the core building block of Ascon, the winner in the lightweight category of the CAESAR competition. With ISAP, another Ascon-p-based AEAD scheme is currently competing in the 2nd round of the NIST lightweight cryptography standardization project. In contrast to Ascon, ISAP focuses on providing hardening/protection against a large class of implementation attacks, such as DPA, DFA, SFA, and SIFA, entirely on mode-level. Consequently, Ascon-p can be used to realize a wide range of cryptographic computations such as authenticated encryption, hashing, pseudorandom number generation, with or without the need for implementation security, which makes it the perfect choice for lightweight cryptography on embedded devices. In this paper, we implement Ascon-p as an instruction extension for RISC-V that is tightly coupled to the processors register file and thus does not require any dedicated registers. This single instruction allows us to realize all cryptographic computations that typically occur on embedded devices with high performance. More concretely, with ISAP and Ascon\u27s family of modes for AEAD and hashing, we can perform cryptographic computations with a performance of about 2 cycles/byte, or about 4 cycles/byte if protection against fault attacks and power analysis is desired. As we show, our instruction extension requires only 4.7 kGE, or about half the area of dedicated Ascon co-processor designs, and is easy to integrate into low-end embedded devices like 32-bit ARM Cortex-M or RISC-V microprocessors. Finally, we analyze the provided implementation security of ISAP, when implemented using our instruction extension

    New Properties of Double Boomerang Connectivity Table

    Get PDF
    The double boomerang connectivity table (DBCT) is a new table proposed recently to capture the behavior of two consecutive S-boxes in boomerang attacks. In this paper, we observe an interesting property of DBCT of S-box that the ladder switch and the S-box switch happen in most cases for two continuous S-boxes, and for some S-boxes only S-box switch and ladder switch are possible. This property implies an additional criterion for S-boxes to resist the boomerang attacks and provides as well a new evaluation direction for an S-box. Using an extension of the DBCT, we verify that some boomerang distinguishers of TweAES and Deoxys are flawed. On the other hand, inspired by the property, we put forward a formula for estimating boomerang cluster probabilities. Furthermore, we introduce the first model to search for boomerang distinguishers with good cluster probabilities. Applying the model to CRAFT, we obtain 9-round and 10-round boomerang distinguishers with a higher probability than that of previous works

    A Comprehensive Framework for Fair and Efficient Benchmarking of Hardware Implementations of Lightweight Cryptography

    Get PDF
    In this paper, we propose a comprehensive framework for fair and efficient benchmarking of hardware implementations of lightweight cryptography (LWC). Our framework is centered around the hardware API (Application Programming Interface) for the implementations of lightweight authenticated ciphers, hash functions, and cores combining both functionalities. The major parts of our API include the minimum compliance criteria, interface, and communication protocol supported by the LWC core. The proposed API is intended to meet the requirements of all candidates submitted to the NIST Lightweight Cryptography standardization process, as well as all CAESAR candidates and current authenticated cipher and hash function standards. In order to speed-up the development of hardware implementations compliant with this API, we are making available the LWC Development Package and the corresponding Implementer’s Guide. Equipped with these resources, hardware designers can focus on implementing only a core functionality of a given algorithm. The development package facilitates the communication with external modules, full verification of the LWC core using simulation, and generation of optimized results. The proposed API for lightweight cryptography is a superset of the CAESAR Hardware API, endorsed by the organizers of the CAESAR competition, which was successfully used in the development of over 50 implementations of Round 2 and Round 3 CAESAR candidates. The primary extensions include support for optional hash functionality and the development of cores resistant against side-channel attacks. Similarly, the LWC Development Package is a superset of the part of the CAESAR Development Package responsible for support of Use Case 1 (lightweight) CAESAR candidates. The primary extensions include support for hash functionality, increasing the flexibility of the code shared among all candidates, as well as extended support for the detection of errors preventing the correct operation of cores during experimental testing. Overall, our framework supports (a) fair ranking of candidates in the NIST LWC standardization process from the point of view of their efficiency in hardware before and after the implementation of countermeasures against side-channel attacks, (b) ability to perform benchmarking within the limited time devoted to Round2 and any subsequent rounds of the NIST LWC standardization process, (c) compatibility among implementations of the same algorithm by different designers and (d) fast deployment of the best algorithms in real-life applications

    Improving the Rectangle Attack on GIFT-64

    Get PDF
    GIFT is a family of lightweight block ciphers based on SPN structure and composed of two versions named GIFT-64 and GIFT-128. In this paper, we reevaluate the security of GIFT-64 against the rectangle attack under the related-key setting. Investigating the previous rectangle key recovery attack on GIFT-64, we obtain the core idea of improving the attack——trading off the time complexity of each attack phase. We flexibly guess part of the involved subkey bits to balance the time cost of each phase so that the overall time complexity of the attack is reduced. Moreover, the reused subkey bits are identified according to the linear key schedule of GIFT-64 and bring additional advantages for our attacks. Furthermore, we incorporate the above ideas and propose a dedicated MILP model for finding the best rectangle key recovery attack on GIFT-64. As a result, we get the improved rectangle attacks on 26-round GIFT-64, which are the best attacks on it in terms of time complexity so far

    Cryptographic competitions

    Get PDF
    Competitions are widely viewed as the safest way to select cryptographic algorithms. This paper surveys procedures that have been used in cryptographic competitions, and analyzes the extent to which those procedures reduce security risks
    corecore