
Matching Attacks on Romulus-M

Makoto Habu1, Kazuhiko Minematsu2, and Tetsu Iwata1

1 Nagoya University, Nagoya, Japan
habu.makoto@f.mbox.nagoya-u.ac.jp, tetsu.iwata@nagoya-u.jp

2 NEC Corporation, Kanagawa, Japan
k-minematsu@nec.com

Abstract. This paper considers a problem of identifying matching at-
tacks against Romulus-M, one of the ten finalists of NIST Lightweight
Cryptography standardization project. Romulus-M is provably secure,
i.e., there is a theorem statement showing the upper bound on the suc-
cess probability of attacking the scheme as a function of adversaries’
resources. If there exists an attack that matches the provable security
bound, then this implies that the attack is optimal, and that the bound
is tight in the sense that it cannot be improved. We show that the se-
curity bounds of Romulus-M are tight for a large class of parameters by
presenting concrete matching attacks.

Keywords: Lightweight cryptography · Authenticated encryption with
associated data · Provable security · Romulus-M · Tightness · Matching
attack

1 Introduction

An authenticated encryption with associated data (AEAD) scheme is a sym-
metric key primitive used for securing data in terms of privacy and authenticity
simultaneously. NIST holds Lightweight Cryptography standardization project3

to select an international standard scheme for AEAD and hashing for constrained
devices. In March 2021, NIST selected a total of ten finalists, and we consider one
of the schemes called Romulus [3,5]. More precisely, the Romulus family of an
AEAD scheme consists of Romulus-N, Romulus-M, Romulus-T, and Romulus-H [3].
Romulus-N is for nonce-based AEAD, Romulus-M is for nonce misuse-resistant
AEAD, Romulus-T is for leakage-resilient AEAD, and Romulus-H is for hashing,
and our focus is Romulus-M. They all use a tweakable block cipher (TBC) [8,9]
as the underlying primitive, and they specifically use SKINNY [1] in their spec-
ifications [3]. The provable security results are presented in [5] for Romulus-N
and Romulus-M, and there is also a third party proof on these schemes by Jooy-
oung Lee [7]. A provable security analysis on Romulus-T (a.k.a. TEDT mode) is
presented in [2] and that on Romulus-H (a.k.a. MDPH) is in [11,4].

The provable security of a symmetric key scheme refers to a theorem state-
ment showing the upper bound on the success probability of attacking the

3 https://csrc.nist.gov/projects/lightweight-cryptography

https://csrc.nist.gov/projects/lightweight-cryptography

scheme, where the upper bound is expressed as a function of adversaries’ re-
sources. Examples of the resources include the running time, the number of
oracle calls, the length of each query, or the total length of responses the adver-
sary obtains from the oracle. In this paper, we consider a problem of identifying
matching attacks against Romulus-M for a class of parameters. Such attacks are
optimal since obtaining a better attack complexity is impossible as they match
the provable security bound, and they also show that the provable security bound
is tight in the sense that obtaining a better security bound is impossible.

Provable security and attacks of Romulus-M. We focus on the provable security
of Romulus-M presented in [5]. Following the standard security notions for AEAD
schemes [13,12], it has two security bounds. One is for privacy and the other is
for authenticity. We assume that the TBC is ideally secure, meaning that we
do not consider adversaries’ running time (time complexity). For privacy, we
consider an adversary that can repeat a nonce up to r times. Then the privacy
bound is of the form 4rσpriv/2

n, where σpriv is the effective block length which
counts the number of primitive calls during the privacy game, and n is the block
length of the underlying TBC. For authenticity, we consider an adversary that
can repeat a nonce up to r times in encryption queries. The authenticity bound
is (4rqe + 5rqd)/2

n, where qe is the number of encryption queries and qd is the
number of decryption queries.

In this paper, for privacy, we present an attack with a success probability
of at least 0.03rσpriv/2

n, showing the tightness of the privacy bound up to a
constant factor. The attack reduces to a collision finding problem, where there
is a restriction that the same nonce can be repeated at most r times.

We also present an authenticity attack with a success probability of at least
0.07rqe/2

n by making qe encryption queries and one decryption query. In more
detail, the authenticity provable security bound shows the infeasibility of an
existential forgery, i.e., the adversary cannot find some non-trivial tuple of a
nonce, associated data (AD), a ciphertext, and a tag that is accepted by the
decryption oracle, and hence there is no need for the adversary to have control
over the forged plaintext. On the other hand, our attack shows the feasibility of
a universal forgery, meaning that the adversary can forge any tuple of a nonce,
AD, and a plaintext, that could be maliciously chosen by the adversary before
the start of the authenticity game. Our authenticity attack follows the idea
of [6,10] that shows universal forgery attacks on various MACs with birthday-
bound complexity, while in the case of Romulus-M, as in the privacy attack,
there is a restriction that the same nonce can be repeated at most r times in
encryption queries.

See Table 1 for the summary of provable security bounds and the success
probability of our attacks in this paper.

2 Preliminaries

Authenticated encryption with associated data (AEAD). Let Π = (Enc,Dec) be
an AEAD scheme. For a key K ∈ K, the encryption algorithm EncK : N ×A×

2

Table 1. Summary of provable security bounds [5] and the success probability of our
attacks. In the table, n is the block length of the TBC, r is the number of times the
adversary can repeat a nonce in encryption queries, σpriv is the number of TBC calls
during the privacy game, qe is the number of encryption queries, and qd is the number
of decryption queries.

Privacy Authenticity Reference

∀A,Advpriv
Romulus-M(A) ≤

4rσpriv

2n
∀A,Advauth

Romulus-M(A) ≤
4rqe + 5rqd

2n
[5]

∃A,Advpriv
Romulus-M(A) ≥

0.03rσpriv

2n
∃A,Advauth

Romulus-M(A) ≥
0.07rqe

2n
This paper

M→ C×T takes a nonce N ∈ N , associated data (AD) A ∈ A, and a plaintext
M ∈ M as input, and returns a ciphertext C ∈ C and a tag T ∈ T , where
K,N ,A,M, C, and T are the key space, nonce space, AD space, plaintext space,
ciphertext space, and tag space, respectively. We write EncK(N,A,M) = (C, T).
The decryption algorithm DecK : N×A×C×T →M∪{⊥} takes (N,A,C, T) ∈
N × A × C × T as input, and outputs M or ⊥, where the symbol ⊥ means
rejection. We write DecK(N,A,C, T) = M or DecK(N,A,C, T) = ⊥. We require
the correctness of the scheme. That is, for any (K,N,A,M) ∈ K×N ×A×M,
we require that DecK(N,A,EncK(N,A,M)) = M holds.

Notation. Let {0, 1}n be the set of bit strings of n bits, and {0, 1}∗ be the
set of all finite bit strings, including the empty string ϵ. For X ∈ {0, 1}∗, |X|
denotes its length in bits. For two bit strings X1 and X2, let X1∥X2 denote their

concatenation. For X ∈ {0, 1}∗, let (X[1], . . . , X[ℓ])
n←− X denote the partition

of X into n-bit strings, i.e., if X is a non-empty string, then X[1], . . . , X[ℓ] are
unique bit strings such that X[1]∥· · ·∥X[ℓ] = X, |X[i]| = n for 1 ≤ i ≤ ℓ−1, and
1 ≤ |X[ℓ]| ≤ n, and if X is the empty string, then X[1]

n←− X, where X[1] is the
empty string. We write |X|n = max{1, ⌈|X|/n⌉}, and it follows that ℓ = |X|n.
For X ∈ {0, 1}∗ with |X| ≥ ℓ, we write lsbℓ(X) to denote the truncation of X
to its ℓ least significant bits.

Padding. Let n be a multiple of 8. For X ∈ {0, 1}∗ with |X| a multiple of 8 and
|X| ≤ n, we let padn(X) = X if |X| = n, and padn(X) = X ∥0n−|X|−8∥len8(X)
if 0 ≤ |X| < n, where len8(X) denotes the 8-bit binary representation of the
byte length of X.

Tweakable block cipher (TBC) [8,9]. In Romulus-M, we use a TBC Ẽ : K×T ×
{0, 1}n → {0, 1}n, where K is the key space and T is the tweak space, and for

each (K,T) ∈ K×T , Ẽ(K,T , ·) is a permutation over {0, 1}n. The tweak T is of
the form T = (TW , B,D), where TW ∈ {0, 1}n, B ∈ {0, 1}8 is used for domain

separation, and D ∈ {0, 1}n−8 is used as a block counter. We write Ẽ
(X,w,i)
K (S)

for the output of the TBC under the key K, tweak (X,w, i), and input block S,
where i ∈ {0, 1}n−8 denotes the binary representation of i ∈ N.

3

S S′

M

C

G

Fig. 1. The state update function ρ

A version of SKINNY [1] called Skinny-128-384+ is used in [3], in which case
we have n = 128. The details of the TBC are irrelevant to our attacks and we
treat n as a security parameter.

We write Perm(n) for the set of all the permutations over {0, 1}n. A random
permutation is a permutation π ∈ Perm(n) that is chosen uniformly at random
from Perm(n).

State update function. In Romulus-M, we use a state update function ρ : {0, 1}n×
{0, 1}n → {0, 1}n × {0, 1}n and its inverse function ρ−1 : {0, 1}n × {0, 1}n →
{0, 1}n × {0, 1}n. They are defined as ρ(S,M) = (S′, C), where C = M ⊕G(S)
and S′ = S⊕M , and ρ−1(S,C) = (S′,M), whereM = C⊕G(S) and S′ = S⊕M .
See Fig. 1. Here, G(·) is a linear mapping over {0, 1}n defined by an n×n matrix.
The details are irrelevant to our attack and we omit the description, which can
be found in [3].

We remark that the notation ρ−1 is meant to be the inverse function of ρ
with respect to its second argument only. We also remark that for any (S,M) ∈
{0, 1}n × {0, 1}n, if ρ(S,M) = (S′, C), then ρ−1(S,C) = (S′,M) holds.

Security notion. A privacy adversary A against Π = (Enc,Dec) has an oracle
O, which is either the encryption algorithm EncK or a random oracle $, where
$-oracle returns a uniform random bit string that has the same length as the
output of EncK-oracle. We define the privacy advantage as

Advpriv
Π (A) def

= |Pr[AEncK ⇒ 1]− Pr[A$ ⇒ 1]| ,

where the first probability is taken over the choice of K and the internal coin of
A, and the last one is over $ and A.

An authenticity adversary A has the encryption oracle EncK and the decryp-
tion oracle DecK . We say that AEncK ,DecK forges if it makes a decryption query
(N∗, A∗, C∗, T ∗) such that DecK(N∗, A∗, C∗, T ∗) = M∗, where (C∗, T ∗) was not
returned from EncK-oracle for an encryption query (N∗, A∗,M∗). We define the

4

authenticity advantage as

Advauth
Π (A) def

= Pr
[
AEncK ,DecK forges

]
,

where the probability is taken over the choice of K and the internal coin of A.
This captures the authenticity in terms of existential forgery attacks, mean-

ing that the adversary succeeds in forgery if it makes some non-trivial decryp-
tion query (N∗, A∗, C∗, T ∗) that is not rejected, i.e., the forged nonce, AD, and
plaintext (N∗, A∗,M∗) may not be fully controlled by the adversary. A universal
forgery is a forgery where A succeeds in forgery for any given (N∗, A∗,M∗), that
could be fully controlled by the adversary.

3 Specification and Provable Security of Romulus-M

3.1 Specification of Romulus-M

Romulus-M uses a TBC Ẽ as the underlying primitive. We present the algorith-
mic description of the encryption and decryption algorithms in Fig. 2.

First, for an input (N,A,M), where N ∈ {0, 1}n and A,M ∈ {0, 1}∗, the
encryption of Romulus-M parses A and M into n-bit blocks, and processes them
by applying the state update function ρ and the TBC Ẽ alternatively, and then
a tag T ∈ {0, 1}n is computed by using the nonce N as a part of the tweak for

Ẽ. Then a ciphertext C is computed starting from T , where the output of the
TBC Ẽ is used as the randomness to encrypt the i-th plaintext block M [i] into
the i-th ciphertext block C[i]. We note that |C| = |M | holds. See Fig. 3 for an
illustration for the case |A| = 2n and |M | = 2n.

The decryption of Romulus-M takes (N,A,C, T) as input, and it first com-
putes a plaintext M from N and C. Then it computes a tag T ∗ for (N,A,M)
following the encryption algorithm, and returns M if T ∗ = T . Otherwise, it
outputs ⊥, indicating rejection.

3.2 Provable Security of Romulus-M

Romulus-M is known to be provably secure. In what follows, we assume that
the underlying TBC is perfectly secure. The following provable security result
regarding privacy is known.

Theorem 1 ([5]). For any privacy adversary A that makes at most qe encryp-
tion queries and can repeat a nonce at most 1 ≤ r ≤ 2n−1 times, we have

Advpriv
Romulus-M(A) ≤

4rσpriv

2n
,

where σpriv is the total number of effective block length of all the encryption
queries.

5

Algorithm Romulus-M.EncK(N,A,M)

1. S ← 0n

2. (X[1], . . . , X[a])
n←− A

3. (X[a+ 1], . . . , X[a+m])
n←−M

4. z ← |X[a+m]|
5. w ← 48
6. if |X[a]| < n then w ← w ⊕ 2
7. if |X[a+m]| < n then w ← w ⊕ 1
8. if a mod 2 = 0 then w ← w ⊕ 8
9. if m mod 2 = 0 then w ← w ⊕ 4

10. X[a]← padn(X[a])
11. X[a+m]← padn(X[a+m])
12. x← 40
13. for i = 1 to ⌊(a+m)/2⌋
14. (S, η)← ρ(S,X[2i− 1])
15. if i = ⌊a/2⌋+ 1 then x← x⊕ 4

16. S ← Ẽ
(X[2i],x,2i−1)
K (S)

17. end for
18. if a mod 2 = m mod 2 then
19. (S, η)← ρ(S, 0n)
20. else
21. (S, η)← ρ(S,X[a+m])

22. S ← Ẽ
(N,w,a+m)
K (S)

23. (η, T)← ρ(S, 0n)
24. if M = ϵ then return (ϵ, T)
25. S ← T
26. for i = 1 to m
27. S ← Ẽ

(N,36,i−1)
K (S)

28. (S,C[i])← ρ(S,X[a+ i])
29. end for
30. C[m]← lsbz(C[m])
31. C ← C[1] ∥ · · · ∥ C[m− 1] ∥ C[m]
32. return (C, T)

Algorithm Romulus-M.DecK(N,A,C, T)

1. if C = ϵ then M ← ϵ
2. else
3. S ← T
4. (C[1], . . . , C[m])

n←− C
5. z ← |C[m]|
6. C[m]← padn(C[m])
7. for i = 1 to m
8. S ← Ẽ

(N,36,i−1)
K (S)

9. (S,M [i])← ρ−1(S,C[i])
10. end for
11. M [m]← lsbz(M [m])
12. M ←M [1] ∥ · · · ∥M [m− 1] ∥M [m]
13. S ← 0n

14. (X[1], . . . , X[a])
n←− A

15. (X[a+ 1], . . . , X[a+m])
n←−M

16. w ← 48
17. if |X[a]| < n then w ← w ⊕ 2
18. if |X[a+m]| < n then w ← w ⊕ 1
19. if a mod 2 = 0 then w ← w ⊕ 8
20. if m mod 2 = 0 then w ← w ⊕ 4
21. X[a]← padn(X[a])
22. X[a+m]← padn(X[a+m])
23. x← 40
24. for i = 1 to ⌊(a+m)/2⌋
25. (S, η)← ρ(S,X[2i− 1])
26. if i = ⌊a/2⌋+ 1 then x← x⊕ 4

27. S ← Ẽ
(X[2i],x,2i−1)
K (S)

28. end for
29. if a mod 2 = m mod 2 then
30. (S, η)← ρ(S, 0n)
31. else
32. (S, η)← ρ(S,X[a+m])

33. S ← Ẽ
(N,w,a+m)
K (S)

34. (η, T ∗)← ρ(S, 0n)
35. if T ∗ = T then return M else ⊥

Fig. 2. The encryption and decryption algorithms of Romulus-M [3]. The dummy
variable η is always discarded.

The total number of effective block length refers to the total number of TBC
calls during the privacy game. In more detail, if A makes q encryption queries
(N1, A1,M1), . . . , (Nq, Aq,Mq), then the number of effective block length of the
i-th query is at most ⌊(ai +mi)/2⌋+ 1 +mi, and the total number of effective

6

Ẽ40,1
K

ρ

/ n

A[2]

n

/

/ n

A[1]

0n ρ

/ n/ n

M [1] M [2]

Ẽ44,3
K

ρ

/ n

ρ

0n N 0n

T

Ẽ60,4
K

n

/ ρ

/ n

M [1]

ρT Ẽ36,0
K Ẽ36,1

K

N N M [2]

/ n

/ n / n

C[1] C[2]

Fig. 3. The encryption of Romulus-M for the case |A| = 2n and |M | = 2n

block length of A is as most
∑

1≤i≤q (⌊(ai +mi)/2⌋+ 1 +mi), where ai = |Ai|n
and mi = |Mi|n.4 The following theorem shows the authenticity security.

Theorem 2 ([5]). For any authenticity adversary A that makes qe encryption
queries and qd decryption queries, and can repeat a nonce at most 1 ≤ r ≤ 2n−1

times in encryption queries, we have

Advauth
Romulus-M(A) ≤

4rqe + 5rqd
2n

.

In Theorems 1 and 2, the case r = 1 corresponds to the security against
nonce-respecting adversaries, and the bound becomes Advpriv

Romulus-M(A) = 0 for

privacy, and Advauth
Romulus-M(A) ≤ 5qd/2

n for authenticity. See [5] for more details.
We do not consider the case r = 1 further, since these bounds are trivially tight.

4 Distinguishing Attack on Romulus-M

In this section, we present our distinguishing attack on Romulus-M. We have the
following theorem.

Theorem 3. For Romulus-M, there exists a privacy adversary A with

Advpriv
Romulus-M(A) ≥

0.03rσpriv

2n
,

where the effective block length of A is σpriv = 5lr and l ≥ 1 is a parameter.
4 In [5], ⌊ai/2⌋ + ⌊mi/2⌋ + 2 + mi is used for the effective block length of the i-th
query, while ⌊(ai +mi)/2⌋+ 1 +mi is tight when the plaintext is non-empty.

7

Algorithm 1 Distinguishing attack on Romulus-M
1: for i = 1, . . . , l do
2: for j = 1, . . . , r do
3: (Ci,j , Ti,j)← O(Ni, Aj ,M)
4: end for
5: end for
6: if Ti,p = Ti,q for some (i, p, q) then
7: return 1
8: else
9: return 0
10: end if

Proof. Let us fix l ≥ 1, and we also fix l distinct nonces N1, . . . , Nl, r distinct
AD A1, . . . , Ar, and an arbitrary plaintext M = (M [1], . . . ,M [m]). For AD,
their first blocks are distinct, while they share the remaining blocks. That is, for
distinct A1[1], . . . , Ar[1] ∈ {0, 1}n and arbitrary A[2], . . . , A[a] ∈ {0, 1}n, we let

Aj = Aj [1] ∥A[2] ∥ · · · ∥A[a]

for 1 ≤ j ≤ r. The values of a and m can be arbitrarily for the attack to work,
but we will later fix them to fit the claimed success probability.

For each 1 ≤ i ≤ l and 1 ≤ j ≤ r, A encrypts (Ni, Aj ,M) and obtains
(Ci,j , Ti,j) from the encryption oracle. If there is a tuple (i, p, q) such that Ti,p =
Ti,q, then A outputs 1, else it outputs 0. Our distinguishing attack is shown in
Algorithm 1

For each encryption query, its number of effective block length is ⌊(a+m)/2⌋+
1 +m, and it follows that the total number of effective block length is σpriv =
lr(⌊(a+m)/2⌋+ 1 +m).

First, consider the case that the oracle O is Romulus-M. It takes (Ni,M,Aj)
as input and outputs (Ci,j , Ti,j). For fixed Ni,M , and A[2], . . . , A[a], we observe
that the mapping

Aj [1] 7→ Ti,j

is a permutation over {0, 1}n. See Fig. 4 for an illustration describing this case.
This property is independent of the lengths of Aj and M . For each 1 ≤ i ≤ r,
we see that Ti,1, . . . , Ti,r are different from each other, since A1[1], . . . , Ar[1] are
distinct. We therefore have Pr[ARomulus-MK ⇒ 1] = 0.

Next, consider the case that O is a random oracle $. For each Ni, the mapping
Aj [1] 7→ Ti,j is an independent random function as nonces are distinct. For Ni,
let pi be the probability that there is a collision among Ti,1, . . . , Ti,r. Then we
have pi = 1 − (2n)r/(2

n)r, where for integers a ≥ b ≥ 1, we let (a)b = a!/b! =
a(a− 1) · · · (a− (b− 1)). Now we have

Pr[A$ ⇒ 1] = 1−
∏

1≤i≤l

(1− pi) = 1−
(
(2n)r
(2n)r

)l

≥
(
1− 1

e

)
0.25lr2

2n
, (1)

8

Aj [1] Ni

Ẽ40,1
K

ρ

/ n

A[2]

n

/

/ n

0n ρ

/ n/ n

M [1] M [2]

Ẽ44,3
K

ρ

/ n

ρ

0n 0n

Ẽ60,4
K

Ti,j

Fig. 4. Distinguishing attack on Romulus-M, showing the case |A| = 2n and |M | = 2n.
Variables that depend on i or j are highlighted in red. For each i, the mapping Aj [1] 7→
Ti,j is a permutation over {0, 1}n. Note that ρ is simply an XOR operation.

where e is Napier’s constant, and the last inequality follows from an elementary
calculation and the details are in Appendix A. The analysis until this point does
not depend on the lengths of Aj nor M , and we fix their lengths |Aj | = 2n and
|M | = 2n, implying a = 2 and m = 2, in which case the total number of effective
block length becomes σpriv = 5lr.

Finally, the lower bound of the privacy advantage is given as

Advpriv
Romulus-M(A) = |Pr[A

Romulus-MK ⇒ 1]− Pr[A$ ⇒ 1]|

≥
(
1− 1

e

)
0.25lr2

2n
≥ 0.03rσpriv

2n
,

and we obtain the claimed success probability in Theorem 3. ⊓⊔

5 Universal Forgery Attack on Romulus-M

In this section, we present our universal forgery attack. For an arbitrary given
challenge (N∗, A∗,M∗) that could be chosen by the adversary A, the goal is to
output (N∗, A∗, C∗, T ∗) that is decrypted into M∗ by the decryption algorithm
of Romulus-M. In our attack, we make use of the following proposition.

Proposition 1. Fix integers l, r1, r3 ≥ 1 and let π ∈ Perm(n) be a random
permutation. For lr1+1 distinct bit strings A∗[1], A1,i,j [1] ∈ {0, 1}n for 1 ≤ i ≤ l
and 1 ≤ j ≤ r1, and lr3 + 1 distinct bit strings A∗[3], A3,i,j [3] ∈ {0, 1}n for
1 ≤ i ≤ l and 1 ≤ j′ ≤ r3, it holds that

Pr
[
∃(i, p, q), π(A1,i,p[1])⊕A∗[3] = π(A∗[1])⊕A3,i,q[3]

]
≥

(
1− 1

e

)
lr1r3
2n

.

See Fig. 5 for the figure describing the event of Proposition 15. The proof is
elementary, and can be found in Appendix B.

5 We use r1 and r3 instead of r1 and r2, since r3 corresponds to the number of distinct
blocks in the third block when we apply Proposition 1 in attacking Romulus-M.

9

A1,i,1[1]
A1,i,2[1]

...
A1,i,r1 [1] A∗[3] A∗[1]

π

A3,i,1[3]
A3,i,2[3]

...
A3,i,r3 [3]

0n π0n

Fig. 5. The event in Proposition 1. For each 1 ≤ i ≤ l, on the left, π takes r1 distinct
input values and a fixed value is XOR’ed to the output. On the left, π takes one fixed
input value and r3 distinct values are XOR’ed to the output, and we are interested in
a collision between r1 output values from the left and r3 output values from the right.

We now have the following theorem regarding the authenticity security of
Romulus-M.

Theorem 4. For Romulus-M, there exists an authenticity adversary A with

Advauth
Romulus-M(A) ≥

0.07rqe
2n

,

where A makes qe = lr+1 encryption queries and qd = 1 decryption query, and
l ≥ 1 is a parameter.

Proof. We fix l ≥ 1, and let N1, . . . , Nl be l distinct nonces that are different
from N∗, the nonce in the challenge. We divide r as r = r1+r3, where r1 = ⌊r/2⌋
and r3 = ⌈r/2⌉. We then prepare lr1 + lr3 AD

A1,1,1, . . . , A1,1,r1 , . . . , A1,l,1, . . . , A1,l,r1 , (2)

A3,1,1, . . . , A3,1,r3 , . . . , A3,l,1, . . . , A3,l,r3 , (3)

where lr1 AD in Eq. (2) are distinct and are different from A∗[1] in the first
block, and lr3 AD in Eq. (3) are distinct and are different from A∗[3] in the
third block. Specifically, for the challenge AD A∗ = (A∗[1], . . . , A∗[a]), let

A1,1,1[1], . . . , A1,1,r1 [1], . . . , A1,l,1[1], . . . , A1,l,r1 [1] ∈ {0, 1}n \ {A∗[1]}

be lr1 distinct n-bit strings, and we define A1,i,j as

A1,i,j = A1,i,j [1] ∥A∗[2] ∥ · · · ∥A∗[a] .

Similarly, we let

A3,1,1[3], . . . , A3,1,r3 [3], . . . , A3,l,1[3], . . . , A3,l,r3 [3] ∈ {0, 1}n \ {A∗[3]}

be lr3 distinct n-bit strings, and let

A3,i,j′ = A∗[1] ∥A∗[2] ∥A3,i,j′ [3] ∥A∗[4] ∥ · · · ∥A∗[a] .

10

Algorithm 2 Universal forgery attack on Romulus-M
1: for i = 1, . . . , l do
2: for j = 1, . . . , r1 do
3: (C1,i,j , T1,i,j)← EncK(Ni, A1,i,j ,M

∗)
4: end for
5: for j′ = 1, . . . , r3 do
6: (C3,i,j′ , T3,i,j′)← EncK(Ni, A3,i,j′ ,M

∗)
7: end for
8: end for
9: if T1,i,p = T3,i,q for some (i, p, q) then
10: A← A1,i,p[1] ∥A∗[2] ∥A3,i,q[3] ∥A∗[4] ∥ · · · ∥A∗[a]
11: (C, T)← EncK(N∗, A,M∗)
12: return (N∗, A∗, C, T)
13: else
14: return failure
15: end if

Having prepared all these bit strings, our universal forgery attack is presented
in Algorithm 2. For each i, j, j′, we encrypt (Ni, A1,i,j ,M

∗) and (Ni, A3,i,j′ ,M
∗),

and obtain (C1,i,j , T1,i,j) and (C3,i,j′ , T3,i,j′). For each i, T1,i,1, . . . , T1,i,r1 are
distinct random values with the same reasoning as in the proof of Theorem 3.
We also observe that T3,i,1, . . . , T3,i,r3 are distinct random values.

Next, we search for a tuple of indices (i, p, q) such that T1,i,p = T3,i,q, which

holds if and only if Ẽ40,1
K (A1,i,p[1])⊕ A∗[3] = Ẽ40,1

K (A∗[1])⊕ A3,i,q[3] holds. See
Fig. 6 illustrating this case. Proposition 1 gives the probability of this event, and
we see

Pr[1 ≤ ∃i ≤ l, 1 ≤ ∃p ≤ r1, 1 ≤ ∃q ≤ r3, T1,i,p = T3,i,q] ≥
(
1− 1

e

)
lr1r3
2n

. (4)

If we find a tuple of indices (i, p, q) that satisfies T1,i,p = T3,i,q, then we make
an encryption query (N∗, A,M∗), where

A = A1,i,p[1] ∥A∗[2] ∥A3,i,q[3] ∥A∗[4] ∥ · · · ∥A∗[a]

and obtain (C, T). Then we make a decryption query (N∗, A∗, C, T). The oracle
returns (N∗, A∗,M∗), and the adversary succeeds in the universal forgery since

Ẽ40,1
K (A1,i,p[1])⊕A3,i,q[3] = Ẽ40,1

K (A∗[1])⊕A∗[3] holds. See Fig. 7 describing the
encryption and decryption queries.

The adversary makes l(r1 + r3) + 1 encryption queries, followed by one de-
cryption query. Since r = r1+ r3, it follows that the adversary makes qe = lr+1
encryption queries. The success probability of our attack is given by Eq. (4), and
we thus have

Advauth
Romulus-M(A) ≥

(
1− 1

e

)
lr1r3
2n
≥ 1

3

(
1− 1

e

)
qer1
2n
≥ 0.07rqe

2n

from qe = l(r1 + r3) + 1 ≤ 3lr3 and r = r1 + r3 ≤ 3r1, and this completes the
proof of Theorem 4. ⊓⊔

11

A1,i,p[1] A∗[2] A∗[3] Ni

T1,i,p

A∗[1] A3,i,q[3]

T3,i,q

· · · · · ·Ẽ40,1
K

ρ0n ρ Ẽ40,3
K

ρ

0nA∗[4]

Ẽw,a+m
K

A∗[2] Ni

· · · · · ·Ẽ40,1
K

ρ0n ρ Ẽ40,3
K

ρ

0nA∗[4]

Ẽw,a+m
K

Fig. 6. Variables that depend on i, j, or j′ are highlighted in red, and we are inter-
ested in the collision between the two red points. We see that T1,i,p = T3,i,q holds iff

Ẽ40,1
K (A1,i,p[1])⊕A∗[3] = Ẽ40,1

K (A∗[1])⊕A3,i,q[3] holds.

6 Conclusions

In this paper, we have presented matching attacks on Romulus-M. Concretely,
our distinguishing attack has an advantage of 0.03rσpriv/2

n, while the provable
security bound is 4rσpriv/2

n, and our authenticity attack has an advantage of
0.07rqe/2

n, while the provable security bound is (4rqe + 5rqd)/2
n. Our authen-

ticity attack is a universal forgery, which is the strongest attack scenario of
authenticity. The results show that the provable security bounds of Romulus-M
are tight for a large class of parameters.

The authenticity bound has two terms, where the last term is O(rqd/2
n).

There is a trivial attack that gives a success probability of O(qd/2
n), while we

do not know if there is a matching attack whose success probability scales with
respect to r, and filling the gap is an open problem.

References

1. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sas-
drich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency vari-
ant MANTIS. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology - CRYPTO
2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2016, Proceedings, Part II. Lecture Notes in Computer Science,
vol. 9815, pp. 123–153. Springer (2016). https://doi.org/10.1007/978-3-662-53008-
5 5, https://doi.org/10.1007/978-3-662-53008-5 5

12

https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5

N∗

T

A1,i,p[1] A∗[2]

A∗[3]A∗[1]

A3,i,q[3]

· · · · · ·Ẽ40,1
K

ρ0n ρ Ẽ40,3
K

ρ

0nA∗[4]

A∗[2]

· · · · · ·Ẽ40,1
K

ρ0n ρ Ẽ40,3
K

ρ

0nA∗[4]

Ẽw,a+m
K

N∗

T

Ẽw,a+m
K

Fig. 7. The top figure is the encryption query, and the bottom one is the decryption
query. The collision between two red points in Fig. 6 implies a collision between two
red points in this figure, and the decryption query will be accepted.

2. Berti, F., Guo, C., Pereira, O., Peters, T., Standaert, F.: Tedt, a
leakage-resist AEAD mode for high physical security applications.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(1), 256–320 (2020).
https://doi.org/10.13154/tches.v2020.i1.256-320, https://doi.org/10.13154/
tches.v2020.i1.256-320

3. Guo, C., Iwata, T., Khairallah, M., Minematsu, K., Peyrin, T.: Romulus v1.3.
Submission to the NIST lightweight cryptography standardization process (2021),
https://csrc.nist.gov/Projects/lightweight-cryptography/

4. Guo, C., Iwata, T., Minematsu, K.: New indifferentiability security proof of MDPH
hash function. IET Inf. Secur. (2022), to appear.

5. Iwata, T., Khairallah, M., Minematsu, K., Peyrin, T.: Duel of the titans: The Ro-
mulus and Remus families of lightweight AEAD algorithms. IACR Trans. Symmet-
ric Cryptol. 2020(1), 43–120 (2020). https://doi.org/10.13154/tosc.v2020.i1.43-
120, https://doi.org/10.13154/tosc.v2020.i1.43-120

6. Jia, K., Wang, X., Yuan, Z., Xu, G.: Distinguishing and second-preimage at-
tacks on cbc-like macs. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) Cryptol-
ogy and Network Security, 8th International Conference, CANS 2009, Kanazawa,
Japan, December 12-14, 2009. Proceedings. Lecture Notes in Computer Science,
vol. 5888, pp. 349–361. Springer (2009). https://doi.org/10.1007/978-3-642-10433-
6 23, https://doi.org/10.1007/978-3-642-10433-6 23

7. Lee, J.: Security evaluation of Romulus. A third party security proof (2021), https:
//romulusae.github.io/romulus/security

8. Liskov, M.D., Rivest, R.L., Wagner, D.A.: Tweakable block ciphers. In: Yung, M.
(ed.) Advances in Cryptology - CRYPTO 2002, 22nd Annual International Cryp-

13

https://doi.org/10.13154/tches.v2020.i1.256-320
https://doi.org/10.13154/tches.v2020.i1.256-320
https://doi.org/10.13154/tches.v2020.i1.256-320
https://csrc.nist.gov/Projects/lightweight-cryptography/
https://doi.org/10.13154/tosc.v2020.i1.43-120
https://doi.org/10.13154/tosc.v2020.i1.43-120
https://doi.org/10.13154/tosc.v2020.i1.43-120
https://doi.org/10.1007/978-3-642-10433-6_23
https://doi.org/10.1007/978-3-642-10433-6_23
https://doi.org/10.1007/978-3-642-10433-6_23
https://romulusae.github.io/romulus/security
https://romulusae.github.io/romulus/security

tology Conference, Santa Barbara, California, USA, August 18-22, 2002, Proceed-
ings. Lecture Notes in Computer Science, vol. 2442, pp. 31–46. Springer (2002).
https://doi.org/10.1007/3-540-45708-9 3, https://doi.org/10.1007/3-540-45708-9
3

9. Liskov, M.D., Rivest, R.L., Wagner, D.A.: Tweakable block ciphers. J. Cryp-
tol. 24(3), 588–613 (2011). https://doi.org/10.1007/s00145-010-9073-y, https://
doi.org/10.1007/s00145-010-9073-y

10. Liu, F., Liu, F.: Universal forgery with birthday paradox: Application to
blockcipher-based message authentication codes and authenticated encryptions.
IACR Cryptol. ePrint Arch. p. 653 (2017), http://eprint.iacr.org/2017/653

11. Naito, Y.: Optimally indifferentiable double-block-length hashing without post-
processing and with support for longer key than single block. In: Schwabe, P.,
Thériault, N. (eds.) Progress in Cryptology - LATINCRYPT 2019 - 6th Interna-
tional Conference on Cryptology and Information Security in Latin America, San-
tiago de Chile, Chile, October 2-4, 2019, Proceedings. Lecture Notes in Computer
Science, vol. 11774, pp. 65–85. Springer (2019). https://doi.org/10.1007/978-3-030-
30530-7 4, https://doi.org/10.1007/978-3-030-30530-7 4

12. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
Proceedings of the 9th ACM Conference on Computer and Communications Secu-
rity, CCS 2002, Washington, DC, USA, November 18-22, 2002. pp. 98–107. ACM
(2002). https://doi.org/10.1145/586110.586125, https://doi.org/10.1145/586110.
586125

13. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) Advances in Cryptology - EUROCRYPT 2006, 25th
Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceed-
ings. Lecture Notes in Computer Science, vol. 4004, pp. 373–390. Springer (2006).
https://doi.org/10.1007/11761679 23, https://doi.org/10.1007/11761679 23

A Proof of Eq. (1)

Here, we show Eq. (1), namely,

1−
(
(2n)r
(2n)r

)l

≥
(
1− 1

e

)
0.25lr2

2n
.

Let p = 1− (2n)r/(2
n)r. Then we have

p = 1−
∏

1≤i≤r−1

(
1− i

2n

)
≥ 1−

∏

1≤i≤r−1

exp

(
− i

2n

)

= 1− exp

(
−0.5r(r − 1)

2n

)
,

14

https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/s00145-010-9073-y
https://doi.org/10.1007/s00145-010-9073-y
https://doi.org/10.1007/s00145-010-9073-y
http://eprint.iacr.org/2017/653
https://doi.org/10.1007/978-3-030-30530-7_4
https://doi.org/10.1007/978-3-030-30530-7_4
https://doi.org/10.1007/978-3-030-30530-7_4
https://doi.org/10.1145/586110.586125
https://doi.org/10.1145/586110.586125
https://doi.org/10.1145/586110.586125
https://doi.org/10.1007/11761679_23
https://doi.org/10.1007/11761679_23

where the inequality uses the fact that 1 − x ≤ exp(−x) holds for any x and is
obtained by setting x = i/2n. We have

1− (1− p)
l ≥ 1− exp

(
−0.5lr(r − 1)

2n

)
≥

(
1− 1

e

)
0.5lr(r − 1)

2n

≥
(
1− 1

e

)
0.25lr2

2n
,

where the second inequality follows from the fact that

(
1− 1

e

)
x ≤ 1− exp(−x) (5)

holds for 0 ≤ x ≤ 1, and the last one uses r(r − 1) ≥ r2/2 for r ≥ 2. ⊓⊔

B Proof of Proposition 1

We consider the complementary event of Proposition 1, which is

Pr
[
∀(i, p, q), π(A1,i,p[1])⊕A∗[3] ̸= π(A∗[1])⊕A3,i,q[3]

]
, (6)

and derive its upper bound. Now, we claim that Eq. (6) is upper bounded by

2n · [(2n − (r3 + 1))r1]
l

(2n)lr1+1
. (7)

To see this, the denominator is (2n)lr1+1, since we are dealing with lr1+1 input-
output pairs of π. For the numerator, we first arbitrary fix π(A∗[1]). Then we
count the number of possible choices of (π(A1,1,1[1]), . . . , π(A1,1,r1 [1])) such that
the set of r1 elements {π(A1,1,1[1])⊕A∗[3], . . . , π(A1,1,r1 [1])⊕A∗[3]} and the set
of r3 elements {π(A∗[1])⊕A3,1,1[3], . . . , π(A

∗[1])⊕A3,1,r3 [3]} are disjoint. That
is, we require that the following two sets are disjoint.

{
{π(A1,1,1[1]), . . . , π(A1,1,r1 [1])} ,
{π(A∗[1])⊕A3,1,1[3]⊕A∗[3], . . . , π(A∗[1])⊕A3,1,r3 [3]⊕A∗[3]} .

Observe that the last set is a fixed set of r3 elements, and that π(A∗[1]) is
not included in the last set, since A3,1,1[3]⊕ A∗[3], . . . , A3,1,r3 [3]⊕ A∗[3] are all
non-zero.

Therefore, the number of possible choices of (π(A1,1,1[1]), . . . , π(A1,1,r1 [1]))
is at most (2n−(r3+1))r1 . We obtain Eq. (7) by applying the same upper bound
for (π(A1,i,1[1]), . . . , π(A1,i,r1 [1])) for 2 ≤ i ≤ l.

15

Next, we have

Eq. (7) ≤
∏

0≤j≤l−1

∏

1≤i≤r1

2n − (r3 + i)

2n − (jr1 + i)

≤
(
1− r3

2n − r1

)r1 (
1− r3

2n − 2r1

)r1

· · ·
(
1− r3

2n − lr1

)r1

≤
(
1− r3

2n

)lr1
.

The claimed bound in Proposition 1 is obtained as

1−
(
1− r3

2n

)lr1
≥ 1− exp

(
− lr1r3

2n

)
≥

(
1− 1

e

)
lr1r3
2n

,

where we used 1− x ≤ exp(−x) for the first inequality, and Eq. (5) for the last
one. ⊓⊔

16

	 Matching Attacks on Romulus-M

