50,637 research outputs found

    Forecasting isocurvature models with CMB lensing information: axion and curvaton scenarios

    Full text link
    Some inflationary models predict the existence of isocurvature primordial fluctuations, in addition to the well known adiabatic perturbation. Such mixed models are not yet ruled out by available data sets. In this paper we explore the possibility of obtaining better constraints on the isocurva- ture contribution from future astronomical data. We consider the axion and curvaton inflationary scenarios, and use Planck satellite experimental specifications together with SDSS galaxy survey to forecast for the best parameter error estimation by means of the Fisher information matrix formal- ism. In particular, we consider how CMB lensing information can improve this forecast. We found substantial improvements for all the considered cosmological parameters. In the case of isocurvature amplitude this improvement is strongly model dependent, varying between less than 1% and above 20% around its fiducial value. Furthermore, CMB lensing enables the degeneracy break between the isocurvature amplitude and correlation phase in one of the models. In this sense, CMB lensing information will be crucial in the analysis of future data.Comment: Accepted for publication in PR

    On the Practical use of Variable Elimination in Constraint Optimization Problems: 'Still-life' as a Case Study

    Full text link
    Variable elimination is a general technique for constraint processing. It is often discarded because of its high space complexity. However, it can be extremely useful when combined with other techniques. In this paper we study the applicability of variable elimination to the challenging problem of finding still-lifes. We illustrate several alternatives: variable elimination as a stand-alone algorithm, interleaved with search, and as a source of good quality lower bounds. We show that these techniques are the best known option both theoretically and empirically. In our experiments we have been able to solve the n=20 instance, which is far beyond reach with alternative approaches

    Constraints on primordial isocurvature perturbations and spatial curvature by Bayesian model selection

    Get PDF
    We present posterior likelihoods and Bayesian model selection analysis for generalized cosmological models where the primordial perturbations include correlated adiabatic and cold dark matter isocurvature components. We perform nested sampling with flat and, for the first time, curved spatial geometries of the Universe, using data from the cosmic microwave background (CMB) anisotropies, the Union supernovae (SN) sample and a combined measurement of the integrated Sachs-Wolfe (ISW) effect. The CMB alone favors a 3% (positively correlated) isocurvature contribution in both the flat and curved cases. The non-adiabatic contribution to the observed CMB temperature variance is 0 < alpha_T < 7% at 98% CL in the curved case. In the flat case, combining the CMB with SN data artificially biases the result towards the pure adiabatic LCDM concordance model, whereas in the curved case the favored level of non-adiabaticity stays at 3% level with all combinations of data. However, the ratio of Bayes factors, or Delta ln(evidence), is more than 5 points in favor of the flat adiabatic LCDM model, which suggests that the inclusion of the 5 extra parameters of the curved isocurvature model is not supported by the current data. The results are very sensitive to the second and third acoustic peak regions in the CMB temperature angular power: therefore a careful calibration of these data will be required before drawing decisive conclusions on the nature of primordial perturbations. Finally, we point out that the odds for the flat non-adiabatic model are 1:3 compared to the curved adiabatic model. This may suggest that it is not much less motivated to extend the concordance model with 4 isocurvature degrees of freedom than it is to study the spatially curved adiabatic model.Comment: 15 pages, 5 figures. V2: References and future predictions added; accepted by PR

    The alignment of SDSS satellites with the VPOS: effects of the survey footprint shape

    Full text link
    It is sometimes argued that the uneven sky coverage of the Sloan Digital Sky Survey (SDSS) biases the distribution of satellite galaxies discovered by it to align with the polar plane defined by the 11 brighter, classical Milky Way (MW) satellites. This might prevent the SDSS satellites from adding significance to the MW's Vast Polar Structure (VPOS). We investigate whether this argument is valid by comparing the observed situation with model satellite distributions confined to the exact SDSS footprint area. We find that the SDSS satellites indeed add to the significance of the VPOS and that the survey footprint rather biases away from a close alignment between the plane fitted to the SDSS satellites and the plane fitted to the 11 classical satellites. Finding the observed satellite phase-space alignments of both the classical and SDSS satellites is a ~5{\sigma} event with respect to an isotropic distribution. This constitutes a robust discovery of the VPOS and makes it more significant than the Great Plane of Andromeda (GPoA). Motivated by the GPoA, which consists of only about half of M31's satellites, we also estimate which fraction of the MW satellites is consistent with being part of an isotropic distribution. Depending on the underlying satellite plane width, only 2 to 6 out of the 27 considered MW satellites are expected to be drawn from isotropy, and an isotropic component of >50% of the MW satellite population is excluded at 95% confidence.Comment: 12 pages, 6 figures, 1 table. Accepted for publication in MNRA

    Isocurvature perturbations and tensor mode in light of Planck and BICEP2

    Full text link
    We investigate the degeneracy of the isocurvature perturbations and the primordial gravitational waves, by using recent observations of the cosmic microwave background (CMB) reported by Planck and BICEP2 collaborations. We show that the tension in the bound on the tensor-to-scalar ratio rr between Planck and BICEP2 can be resolved by introducing the anti-correlated isocurvature perturbations. Quantitatively, we find that with the anti-correlated isocurvature perturbations the constraints on rr from Planck alone and BICEP2 results can be consistent at 68 % C.L.Comment: 16 pages, 7 figures, 1 table; accepted for publication in JCA

    Access Interfaces for Open Archival Information Systems based on the OAI-PMH and the OpenURL Framework for Context-Sensitive Services

    Full text link
    In recent years, a variety of digital repository and archival systems have been developed and adopted. All of these systems aim at hosting a variety of compound digital assets and at providing tools for storing, managing and accessing those assets. This paper will focus on the definition of common and standardized access interfaces that could be deployed across such diverse digital respository and archival systems. The proposed interfaces are based on the two formal specifications that have recently emerged from the Digital Library community: The Open Archive Initiative Protocol for Metadata Harvesting (OAI-PMH) and the NISO OpenURL Framework for Context-Sensitive Services (OpenURL Standard). As will be described, the former allows for the retrieval of batches of XML-based representations of digital assets, while the latter facilitates the retrieval of disseminations of a specific digital asset or of one or more of its constituents. The core properties of the proposed interfaces are explained in terms of the Reference Model for an Open Archival Information System (OAIS).Comment: Accepted paper for PV 2005 "Ensuring Long-term Preservation and Adding Value to Scientific and Technical data" (http://www.ukoln.ac.uk/events/pv-2005/

    Probing light WIMPs with directional detection experiments

    Full text link
    The CoGeNT and CRESST WIMP direct detection experiments have recently observed excesses of nuclear recoil events, while the DAMA/LIBRA experiment has a long standing annual modulation signal. It has been suggested that these excesses may be due to light mass, m_chi ~ 5-10 GeV, WIMPs. The Earth's motion with respect to the Galactic rest frame leads to a directional dependence in the WIMP scattering rate, providing a powerful signal of the Galactic origin of any recoil excess. We investigate whether direct detection experiments with directional sensitivity have the potential to observe this anisotropic scattering rate with the elastically scattering light WIMPs proposed to explain the observed excesses. We find that the number of recoils required to detect an anisotropic signal from light WIMPs at 5 sigma significance varies from 7 to more than 190 over the set of target nuclei and energy thresholds expected for directional detectors. Smaller numbers arise from configurations where the detector is only sensitive to recoils from the highest speed, and hence most anisotropic, WIMPs. However, the event rate above threshold is very small in these cases, leading to the need for large experimental exposures to accumulate even a small number of events. To account for this sensitivity to the tail of the WIMP velocity distribution, whose shape is not well known, we consider two exemplar halo models spanning the range of possibilities. We also note that for an accurate calculation the Earth's orbital speed must be averaged over. We find that the exposures required to detect 10 GeV WIMPs at a WIMP-proton cross-section of 10^-4 pb are of order 10^3 kg day for a 20 keV energy threshold, within reach of planned directional detectors. Lower WIMP masses require higher exposures and/or lower energy thresholds for detection.Comment: 9 pages, 6 figures, v2: version to appear in Phys. Rev. D with additional discussio

    Spin and Dipole Ordering in Ni_2InSbO_6 and Ni_2ScSbO_6 with corundum-related structure

    Full text link
    The complex metal oxides Ni2InSbO6 (NISO) and Ni2ScSbO6 (NSSO) have been prepared in form of polycrystalline powders by a solid state reaction route. The crystal structure and magnetic properties of the compounds were investigated using a combination of X-ray and neutron powder diffraction, electron microscopy, calorimetric and magnetic measurements. The compounds adopt a trigonal structure, space group R3, of the corundum related Ni3TeO6 (NTO) type. Only one of the octahedral Ni positions (Ni(2)) of the NTO structure was found to be occupied by In (Sc). NTO has non-centrosymmetric structure and is ferroelectric below 1000 K, dielectric and second harmonic measurements suggest that also NISO and NSSO are correspondingly ferroelectric. Magnetization measurements signified antiferromagnetic ordering below TN=60 K (NSSO) and 76 K (NISO). The magnetic structure is formed by two antiferromagnetically coupled incommensurate helices with the spiral axis along the b-axis and propagation vector k = [0, ky,0] with ky= 0.036(1) (NSSO) and ky= 0.029(1) (NISO). The observed structural and magnetic properties of NISO and NSSO are discussed and compared with those of NTO.Comment: submitted version; see journal-ref for the version revised after review, edited and published in the journal's style. 28 pages; 9 figure

    A Dichotomy in Satellite Quenching Around L* Galaxies

    Full text link
    We examine the star formation properties of bright (~0.1 L*) satellites around isolated ~L* hosts in the local Universe using spectroscopically confirmed systems in the Sloan Digital Sky Survey DR7. Our selection method is carefully designed with the aid of N-body simulations to avoid groups and clusters. We find that satellites are significantly more likely to be quenched than a stellar mass-matched sample of isolated galaxies. Remarkably, this quenching occurs only for satellites of hosts that are themselves quenched: while star formation is unaffected in the satellites of star-forming hosts, satellites around quiescent hosts are more than twice as likely to be quenched than stellar-mass matched field samples. One implication of this is that whatever shuts down star formation in isolated, passive L* galaxies also plays at least an indirect role in quenching star formation in their bright satellites. The previously-reported tendency for "galactic conformity" in color/morphology may be a by-product of this host-specific quenching dichotomy. The S\'ersic indices of quenched satellites are statistically identical to those of field galaxies with the same specific star formation rates, suggesting that environmental and secular quenching give rise to the same morphological structure. By studying the distribution of pairwise velocities between the hosts and satellites, we find dynamical evidence that passive host galaxies reside in dark matter halos that are ~45% more massive than those of star-forming host galaxies of the same stellar mass. We emphasize that even around passive hosts, the mere fact that galaxies become satellites does not typically result in star formation quenching: we find that only ~30% of ~0.1 L* galaxies that fall in from the field are quenched around passive hosts, compared with ~0% around star forming hosts.Comment: 14 pages, 9 figure
    corecore