60,401 research outputs found

    Investigation of electrical contact resistance for nonconductive film functionalized with Π -conjugated self-assembled molecules

    Get PDF
    ©2007 American Institute of Physics. The electronic version of this article is the complete one and can be found online at: http://link.aip.org/link/?APPLAB/90/092102/1DOI:10.1063/1.2709638Nonconductive adhesive/nonconductive film (NCA/NCF) bonding technology has attracted increasing research interests as lead-free interconnect. During bonding, heat and pressure are applied and the direct physical contacts between the two surfaces of integrated circuit bump and substrate bond pad can be achieved. The electrical contact resistance of a NCA/NCF joint is controlled by the pressure, roughness and NCA/NCF material properties. An accurate prediction of contact resistance can help guide experiment setup towards improving the electrical performance of NCA/NCF. In this study, a model is developed and correlated to experiments. The effects of NCA/NCF material properties on electrical contact resistance are investigated

    Computations on Nondeterministic Cellular Automata

    Get PDF
    The work is concerned with the trade-offs between the dimension and the time and space complexity of computations on nondeterministic cellular automata. It is proved, that 1). Every NCA \Cal A of dimension rr, computing a predicate PP with time complexity T(n) and space complexity S(n) can be simulated by rr-dimensional NCA with time and space complexity O(T1r+1Srr+1)O(T^{\frac{1}{r+1}} S^{\frac{r}{r+1}}) and by r+1r+1-dimensional NCA with time and space complexity O(T1/2+S)O(T^{1/2} +S). 2) For any predicate PP and integer r>1r>1 if \Cal A is a fastest rr-dimensional NCA computing PP with time complexity T(n) and space complexity S(n), then T=O(S)T= O(S). 3). If Tr,PT_{r,P} is time complexity of a fastest rr-dimensional NCA computing predicate PP then T_{r+1,P} &=O((T_{r,P})^{1-r/(r+1)^2}), T_{r-1,P} &=O((T_{r,P})^{1+2/r}). Similar problems for deterministic CA are discussed.Comment: 18 pages in AmsTex, 3 figures in PostScrip

    Therblig-embedded value stream mapping method for lean energy machining

    Get PDF
    To improve energy efficiency, extensive studies have focused on the cutting parameters optimization in the machining process. Actually, non-cutting activities (NCA) occur frequently during machining and this is a promising way to save energy through optimizing NCA without changing the cutting parameters. However, it is difficult for the existing methods to accurately determine and reduce the energy wastes (EW) in NCA. To fill this gap, a novel Therblig-embedded Value Stream Mapping (TVSM) method is proposed to improve the energy transparency and clearly show and reduce the EW in NCA. The Future-State-Map (FSM) of TVSM can be built by minimizing non-cutting activities and Therbligs. By implementing the FSM, time and energy efficiencies can be improved without decreasing the machining quality, which is consistent with the goal of lean energy machining. The method is validated by a machining case study, the results show that the total energy is reduced by 7.65%, and the time efficiency of the value-added activities is improved by 8.12% , and the energy efficiency of value-added activities and Therbligs are raised by 4.95% and 1.58%, respectively. This approach can be applied to reduce the EW of NCA, to support designers to design high energy efficiency machining processes during process planning

    A Polymerase-chain-reaction Assay for the Specific Identification of Transcripts Encoded by Individual Carcinoembryonic Antigen (CEA)-gene-family Members

    Get PDF
    Carcinoembryonic antigen (CEA) is a tumor marker that belongs to a family of closely related molecules with variable expression patterns. We have developed sets of oligonucleotide primers for the specific amplification of transcripts from individual CEA-family members using the reverse transcriptase/ polymerase chain reaction (RT/PCR). Specific primer sets were designed for CEA, non-specific cross-reacting antigen (NCA), biliary glycoprotein (BGP), carcinoembryonic antigen gene-family members 1, 6 and 7 (CGMI, CGM6 and CGM7), and one set for all pregnancy-specific glycoprotein (PSG) transcripts. Primers were first tested for their specificity against individual cDNA clones and product-hybridization with internal, transcript-specific oligonucleotides. Total RNA from 12 brain and 63 gynecological tumors were then tested for expression of CEA-related transcripts. None were found in tumors located in the brain, including various mesenchymal and neuro-epithelial tumors. CEA and NCA transcripts were, however, present in an adenocarcinoma located in the nasal sinuses. In ovarian mucinous adenocarcinomas, we always found co-expression of CEA and NCA transcripts, and occasionally BGP mRNA. CEA-related transcripts were also found in some serous, endometrioid and clear-cell ovarian carcinomas. CEA, NCA and BGP transcripts were present in endometrial carcinomas of the uterus and cervical carcinomas, whereas uterine leiomyomas were completely negative. No transcripts were found from CGM 1, CGM6, CGM7 or from PSG genes in any of the tumors tested. The PCR data were compared with immunohistochemical investigations of ovarian tumors at the protein level using CEA (26/3/13)-, NCA-50/90 (9A6FR) and NCA-95 (80H3)-specific monoclonal antibodies

    Near-optimal labeling schemes for nearest common ancestors

    Full text link
    We consider NCA labeling schemes: given a rooted tree TT, label the nodes of TT with binary strings such that, given the labels of any two nodes, one can determine, by looking only at the labels, the label of their nearest common ancestor. For trees with nn nodes we present upper and lower bounds establishing that labels of size (2±ϵ)logn(2\pm \epsilon)\log n, ϵ<1\epsilon<1 are both sufficient and necessary. (All logarithms in this paper are in base 2.) Alstrup, Bille, and Rauhe (SIDMA'05) showed that ancestor and NCA labeling schemes have labels of size logn+Ω(loglogn)\log n +\Omega(\log \log n). Our lower bound increases this to logn+Ω(logn)\log n + \Omega(\log n) for NCA labeling schemes. Since Fraigniaud and Korman (STOC'10) established that labels in ancestor labeling schemes have size logn+Θ(loglogn)\log n +\Theta(\log \log n), our new lower bound separates ancestor and NCA labeling schemes. Our upper bound improves the 10logn10 \log n upper bound by Alstrup, Gavoille, Kaplan and Rauhe (TOCS'04), and our theoretical result even outperforms some recent experimental studies by Fischer (ESA'09) where variants of the same NCA labeling scheme are shown to all have labels of size approximately 8logn8 \log n

    Anderson impurity model at finite Coulomb interaction U: generalized Non-crossing Approximation

    Full text link
    We present an extension of the non-crossing approximation (NCA), which is widely used to calculate properties of Anderson impurity models in the limit of infinite Coulomb repulsion UU\to\infty, to the case of finite UU. A self-consistent conserving pseudo-particle representation is derived by symmetrizing the usual NCA diagrams with respect to empty and doubly occupied local states. This requires an infinite summation of skeleton diagrams in the generating functional thus defining the ``Symmetrized finite-U NCA'' (SUNCA). We show that within SUNCA the low energy scale TKT_K (Kondo temperature) is correctly obtained, in contrast to other simpler approximations discussed in the literature.Comment: 7 pages, 6 figure

    Exploring the Impact of Supervision on Pretrial Outcomes

    Get PDF
    This study seeks to investigate the effect of pretrial supervision on the likelihood of failure to appear (FTA) and new criminal activity (NCA) before case disposition. First, drawing on data from two states, this research isolates two groups of defendants: those released pending case disposition with supervision and those released without supervision. Second, this research compares the two groups across several descriptive factors regarding likelihood of FTA and NCA while in the community pending case disposition
    corecore