106 research outputs found

    Toolpath algorithm for free form irregular contoured walls / surfaces with internal deflecting connections.

    Get PDF
    This paper presents a toolpath generation method to efficiently machine free form irregular contoured walls / surfaces (FIWS) containing internal deflecting connections (IDC’s). The toolpath generation method is based on a series of identifications and calculations, where initially a ‘Main Computable Zone (MCZ)’ in the Machinable Areas (Ma’s) of FIWS is identified based on the Tool track dimensions (Td). Then the MCZ’s are divided into Split Computable Zones (SCZ’s) and Split Computable Zones for Internal Connections (SCZI’s) which are subsequently sub divided as ‘Categorized Computable Zones’ (CCZ) with simple-medium-high complexity. The identification of CCZ’s is based on the 10 different types of FIWS representations developed for this study. From the CCZ’s categorization of complexity, they are further split into smaller ‘Machinable Zones (MZ’s)’ using a 4-step algorithm. In the algorithm, the first step calculates a common plane (CP) to cut the steep areas in the CCZ’s where the tool cannot have full access for machining. Once the CP is identified, the second step is to extend it by moving them along the CCZ’s and calculate the necessary ‘Machinable Zones (MZ’s)’ in the next stage. This is done by finding the intersection of CP with the FIWS through a point to point / line plane intersection concept. After this step, the MZ’s are re-iterated by including the open and closed surface criteria and is analyzed for the IDC’s to be combined in the fourth stage. This is achieved by adding up the IDC’s with the existing MZ’s computed by the algorithm. At every stage, the algorithm considers tool collision avoidance and tool rubbing in the CCZ’s and MZ’s . This is by an automatic computation based on the height to fixture clearance for safer neck length which avoids collision and rubbings in the final toolpaths. Finally, a combined tool path is generated for all the MZ’s and has been verified / tested for a sample part and impeller containing similar shapes using UG NX / STEP –NC software

    The Development of Intelligent Machining-error Detector for Machining Sculptured Surfaces using 3 or 5 Axes CNC Milling Machine

    Get PDF
    A report submitted by Rachmawati Wangsaputra to the Research and Creative Productions Committee in 2005 on generating tool paths for machining sculptured surfaces

    Automatic tool path generation for numerically controlled machining of sculptured surfaces

    Get PDF
    This dissertation presents four new tool path generation approaches for numerically controlled machining of sculptured surfaces: TRI\sb-XYINDEX, FINISH, FIVEX\sb-INDEX, FIX\sb-AXIS\sb-INDEX. All of the above systems index the tool across the object surface in the Cartesian space so that evenly distributed tool paths are accomplished. TRI\sb-XYINDEX is a three-axis tool path generation system which uses a surface triangle set (STS) representation of the surface for tool position calculations. Surface edges are detected with local searching algorithms. Quick tool positioning is achieved by selecting candidate elements of polygons. Test results show that TRI\sb-XYINDEX is more efficient when machining surfaces which are relatively flat while the discrete point approach is faster for highly curved surfaces. FINISH was developed for generating three-axis ball-end tool paths for local surface finishing. It was based on the SPS. Given a surface with excess material represented by a set of discrete points, FINISH automatically identifies the undercut areas. Results show that FINISH provides significant improvements in machining efficiency. FIVEX\sb-INDEX is developed for generating five-axis flat-end tool paths. It uses an STS approximation. Contact points on the surface are derived from edge lists obtained from the intersections of vertical cutting planes with the polygon set. The distances between adjacent end points set an initial step-forward increment between surface contact points. To verify tool movements, some intermediate tool positions are interpolated. The key features of FIVEX\sb-INDEX are: (1) a polygon set representing an object which may be composed of multiple surfaces; (2) Surface contact point generation by cutting plane intersection; (3) simple tool incrementing and positioning algorithms; (4) minimal user interaction; (5) user controlled accuracy of resulting tool paths. FIX\sb-AXIS\sb-INDEX is a subsystem of FIVEX\sb-INDEX, generating tool paths for a tool with fixed orientations. Surface contact points are generated similar to FIVEX\sb-INDEX while tool positions are corrected with the highest point technique along the tool axis direction. Linear fitting is applied to output tool positions. FIX\sb-AXIS\sb-INDEX is preferred for machining surfaces curved in one direction, such as ruled surfaces. Test results show that FIX\sb-AXIS\sb-INDEX can serve as a three-axis tool path generation system but a five-axis machine is required to do it. (Abstract shortened by UMI.)

    A new geometric-and-physics model of milling and an effective approach to medial axis transforms of free-form pockets for high performance machining

    Get PDF
    Mechanical part quality and productivity depend on many parameters in CNC milling processes, such as workpiece material, cutters, tool paths, feed rate, and spindle speed, etc. To pursue high performance machining, the cutting parameter optimization is in high demand in industry, though it is quite challenge. This innovative research successfully addresses some essential problems in optimizing the cutting parameters by developing a new geometric-and-physics integrated model of milling and proposing an effective approach to the medial axis transforms of free-form pockets. In this research, an original geometric model of 21/2- and 3-axis CNC milling is developed and integrated with a well-established mechanistic model. A main research contribution is that this integrated model can predict complex milling processes in higher fidelity with instantaneous material remove rates, cutting forces and spindle powers, compared to prior machining models. In the geometric model, an in-process workpiece model is introduced by using a group of discrete Z-layers and applying the B-Rep scheme to represent the workpiece shape on each layer, in order to accurately represent instantaneous cutter-and-workpiece engagement in 2Yz- and 3-axis milling. Hence, the un-deformed chip geometry can be found even for complex part milling, which is then fed to the mechanistic model to predict instantaneous cutting forces. By using this integrated model, cutting parameters can be optimized for profiling, pocketing, and surface milling to ensure steady cut and the maximum material removal rates. This model has been verified by experiments, and will be implemented into a software tool for Bombardier Aerospace. Another important research in this work is to propose aggressive roughing of free-form pockets for ultimately high cutting efficiency. For this purpose, an accurate, efficient approach to the medial axis transforms of free-form pockets and an optimal approach to multiple cutters selection and their path generation are proposed. The main contributions of this research include (1) a new mathematical model of medial axis point, (2) an innovative global optimization solver, the hybrid global optimization method, (3) an optimization model of selecting multiple cutters for the maximum material removal rate. This research can substantially promote aggressive roughing in the machining industry to increase cutting efficiency of free-form pockets. The technique has been validated using considerable number of cutting tests and can be directly implemented into commercial CAD/CAM softwar

    Computer aided process planning for multi-axis CNC machining using feature free polygonal CAD models

    Get PDF
    This dissertation provides new methods for the general area of Computer Aided Process Planning, often referred to as CAPP. It specifically focuses on 3 challenging problems in the area of multi-axis CNC machining process using feature free polygonal CAD models. The first research problem involves a new method for the rapid machining of Multi-Surface Parts. These types of parts typically have different requirements for each surface, for example, surface finish, accuracy, or functionality. The CAPP algorithms developed for this problem ensure the complete rapid machining of multi surface parts by providing better setup orientations to machine each surface. The second research problem is related to a new method for discrete multi-axis CNC machining of part models using feature free polygonal CAD models. This problem specifically considers a generic 3-axis CNC machining process for which CAPP algorithms are developed. These algorithms allow the rapid machining of a wide variety of parts with higher geometric accuracy by enabling access to visible surfaces through the choice of appropriate machine tool configurations (i.e. number of axes). The third research problem addresses challenges with geometric singularities that can occur when 2D slice models are used in process planning. The conversion from CAD to slice model results in the loss of model surface information, the consequence of which could be suboptimal or incorrect process planning. The algorithms developed here facilitate transfer of complete surface geometry information from CAD to slice models. The work of this dissertation will aid in developing the next generation of CAPP tools and result in lower cost and more accurately machined components

    Multiresolution analysis as an approach for tool path planning in NC machining

    Get PDF
    Wavelets permit multiresolution analysis of curves and surfaces. A complex curve can be decomposed using wavelet theory into lower resolution curves. The low-resolution (coarse) curves are similar to rough-cuts and high-resolution (fine) curves to finish-cuts in numerical controlled (NC) machining.;In this project, we investigate the applicability of multiresolution analysis using B-spline wavelets to NC machining of contoured 2D objects. High-resolution curves are used close to the object boundary similar to conventional offsetting, while lower resolution curves, straight lines and circular arcs are used farther away from the object boundary.;Experimental results indicate that wavelet-based multiresolution tool path planning improves machining efficiency. Tool path length is reduced, sharp corners are smoothed out thereby reducing uncut areas and larger tools can be selected for rough-cuts

    Manufacturability analysis for non-feature-based objects

    Get PDF
    This dissertation presents a general methodology for evaluating key manufacturability indicators using an approach that does not require feature recognition, or feature-based design input. The contributions involve methods for computing three manufacturability indicators that can be applied in a hierarchical manner. The analysis begins with the computation of visibility, which determines the potential manufacturability of a part using material removal processes such as CNC machining. This manufacturability indicator is purely based on accessibility, without considering the actual machine setup and tooling. Then, the analysis becomes more specific by analyzing the complexity in setup planning for the part; i.e. how the part geometry can be oriented to a cutting tool in an accessible manner. This indicator establishes if the part geometry is accessible about an axis of rotation, namely, whether it can be manufactured on a 4th-axis indexed machining system. The third indicator is geometric machinability, which is computed for each machining operation to indicate the actual manufacturability when employing a cutting tool with specific shape and size. The three manufacturability indicators presented in this dissertation are usable as steps in a process; however they can be executed alone or hierarchically in order to render manufacturability information. At the end of this dissertation, a Multi-Layered Visibility Map is proposed, which would serve as a re-design mechanism that can guide a part design toward increased manufacturability

    Tool selection and path planning in 3-axis rough machining

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1999.Includes bibliographical references (p. 72-77).by Mahadevan Balasubramaniam.S.M
    • …
    corecore