2 research outputs found

    Soyuz/ACRV accommodation study

    Get PDF
    Included is a set of viewgraphs that present the results of a study conducted at the LaRC Space Station Freedom Office at the request of the Space Station Freedom Level 1 Program Office and the JSC ACRV Project Office to determine the implications of accommodating two Soyuz TM spacecraft as Assured Crew Return Vehicles (ACRV) on the Space Station Freedom (SSF) at the Permanently Crewed Capability (PCC) stage. The study examined operational as well as system issues associated with the accommodation of the Soyuz for several potential configuration options. Operational issues considered include physical hardware clearances, worst case Soyuz departure paths, and impacts to baseline operations such as Pressurized Logistics Module (PLM) exchange, Space Station Remote Manipulator System (SSRMS) attachment, Extravehicular Activity (EVA), and automatic rendezvous and docking (AR&D). Systems impact analysis included determining differences between Soyuz interface requirements and SSF capabilities for the Electrical Power System (EPS), Thermal Control System (TCS), Communications and Tracking (C&T), Audio-Video Subsystem (A/V), Data Management System (DMS), and Environmental Control and Life Support System (ECLSS). Significant findings of this study have indicated that the current AV capability of the Soyuz will need to be increased to provide adequate departure clearances for a worst case escape from an uncontrolled SSF and that an interface element will be required to mate the Soyuz vehicles to station, provide for AR&D structural loads, and to house Soyuz-to-SSF system interfaces

    Development of a wide-spectrum thermochemical code with application to planar reacting and non-reacting shocks

    Get PDF
    Menci贸n Internacional en el t铆tulo de doctorThe recent scientific and technological advancements have underscored the critical necessity for reliable, robust, and efficient numerical codes capable of predicting the chemical composition and properties of complex mixtures at chemical equilibrium. In response to this demand, this thesis presents the development and validation of a novel open-source thermochemical code called Combustion Toolbox (CT). This tool is designed to determine the equilibrium state of multi-species mixtures in gaseous or pure condensed phases, including ions. The code incorporates a comprehensive suite of algorithms, ranging from fundamental chemical equilibrium problems to complex computations of steady shock and detonation waves in various flow configurations, as well as predictions of rocket engine performance. Implemented in MATLAB, CT is accompanied by a user-friendly graphical user interface, ensuring flexibility and accessibility for all users. Extensive validation demonstrates excellent agreement with established codes such as NASA鈥檚 CEA, Cantera within Caltech鈥檚 Shock and Detonation Toolbox, and the recent Thermochemical Equilibrium Abundances code. CT has been utilized in all of the studies presented in this thesis, demonstrating its reliability and versatility. The second part of the thesis delves into the theoretical analysis of reactive and nonreactive shocks propagating through non-homogeneous conditions. Conducting experiments and high-fidelity simulations in this field can be challenging and computationally expensive. In this context, linear interaction analysis has emerged as a valuable tool to evaluate the hydrodynamical aspects contributing to the amplification of disturbances across the shock. Two prominent cases are investigated. Firstly, the study focuses on detonations with inhomogeneities in the upstream fuel mass fraction. The findings reveal that, in most cases, the detonation propagation speed is higher than in equivalent homogeneous scenarios. Subsequently, the investigation shifts towards the interaction of hypersonic shocks with turbulent flows, incorporating the associated thermochemical effects in single-species diatomic gases. The analysis is further extended to multi-species mixtures using CT, with a particular emphasis on air. These studies demonstrate that thermochemical effects arising at hypersonic velocities significantly enhance turbulent fluctuations in the post-shock gas compared to the simplified thermochemical frozen gas assumption.Los avances cient铆ficos y tecnol贸gicos recientes han destacado la necesidad cr铆tica de contar con c贸digos num茅ricos fiables, robustos y eficientes capaces de predecir la composici贸n qu铆mica y las propiedades de mezclas complejas en equilibrio qu铆mico. En respuesta a esta demanda, esta tesis presenta el desarrollo y la validaci贸n de un novedoso c贸digo termoqu铆mico de c贸digo abierto llamado Combustion Toolbox (CT). Esta herramienta permite determinar el estado de equilibrio de mezclas multiespecie en fases gaseosas o condensadas puras, incluyendo iones. El c贸digo incorpora una amplia gama de algoritmos, desde problemas fundamentales de equilibrio qu铆mico hasta complejos c谩lculos de ondas de choque y detonaci贸n estacionarias en varias configuraciones de flujo, as铆 como predicciones del rendimiento de motores cohete. Implementado en MATLAB, CT cuenta con una interfaz gr谩fica de usuario f谩cil de usar, que garantiza flexibilidad y accesibilidad para todos los usuarios. Se ha realizado una extensa validaci贸n que demuestra una excelente concordancia con c贸digos establecidos como el CEA de la NASA, Cantera y Shock and Detonation Toolbox del Caltech, as铆 como el reciente c贸digo Thermochemical Equilibrium Abundances. CT se ha utilizado en todos los estudios presentados en esta tesis, demonstrando su fiabilidad y versatilidad. En la segunda parte de la tesis, se analizan los choques reactivos y no reactivos que se propagan en condiciones no homog茅neas. Realizar experimentos y simulaciones de alta fidelidad en este campo puede ser desafiante y costoso computacionalmente. En este contexto, el an谩lisis de interacci贸n lineal ha surgido como una herramienta valiosa para evaluar los aspectos hidrodin谩micos que contribuyen a la amplificaci贸n de las perturbaciones a trav茅s del choque. Se investigan dos casos destacados. En primer lugar, el estudio se centra en las detonaciones con inhomogeneidades aguas arriba de la fracci贸n m谩sica del combustible. Los resultados indican que, en la mayor铆a de los casos, la velocidad de propagaci贸n de la detonaci贸n es mayor que en escenarios homog茅neos equivalentes. Posteriormente, la investigaci贸n se centra en la interacci贸n de choques hipers贸nicos con flujos turbulentos, incorporando los efectos termoqu铆micos asociados en gases diat贸micos de una sola especie. El an谩lisis se extiende adem谩s a mezclas multiespecie utilizando CT, con un 茅nfasis particular en el aire. Estos estudios demuestran que los efectos termoqu铆micos que surgen a velocidades hipers贸nicas aumentan significativamente las fluctuaciones turbulentas en el gas posterior al choque en comparaci贸n con la aproximaci贸n de gas termoqu铆micamente congelado.Programa de Doctorado en Mec谩nica de Fluidos por la Universidad Carlos III de Madrid; la Universidad de Ja茅n; la Universidad de Zaragoza; la Universidad Nacional de Educaci贸n a Distancia; la Universidad Polit茅cnica de Madrid y la Universidad Rovira iPresidente: Francisco Jos茅 Higuera Ant贸n.- Secretario: Carlos Manuel del Pino Pe帽as.- Vocal: Bruno Dene
    corecore