1 research outputs found

    The 29 July 1994 Merritt Island, Fl Microburst: A Case Study Intercomparing Kennedy Space Center Three-Dimensional Lightning Data (LDAR) and WSR-88D Radar Data

    Get PDF
    Many researchers have shown that the development and evolution of electrical discharges within convective clouds is fundamentally related to the growth and dynamics of precipitation particles aloft. In the presence of strong updrafts above the freezing level collisions among mixed-phase particles (i.e., hail. ice, supercooled water) promote the necessary charge separation needed to initiate intra-cloud lightning. A precipitation core that descends below the freezing level is often accompanied by a change in the electrical structure of the cloud. Consequently, more Cloud-to-Ground (CG) than Intra-Cloud (IC) lightning flashes appear. Descending precipitation cores can also play a significant role in the evolution of mesoscale features at the surface (e.g., microbursts, downbursts) because of latent heat and mass loading effects of water and ice. For this reason, some believe that lightning and microbursts are fundamentally linked by the presence of ice particles in thunderstorms. Several radar and lightning studies of microburst thunderstorms from COHMEX in 1986 showed that the peak IC lightning systematically occurred ten minutes before the onset of a microburst. In contrast, most CG lightning occurred at the time of the microburst. Many of the preceding studies have been done using high-resolution research radars and experimental lightning detection systems in focused field projects. In addition, these studies could only determine the vertical origin or occurrence of IC lightning, and not a true three-dimensional representation. Currently, the WSR-88D radar system and a real-time, state-of-the-art lightning system (LDAR) at the Kennedy Space Center (KSC) in Florida provide an opportunity to extend these kinds of studies in a more meaningful operational setting
    corecore