41,596 research outputs found

    Intrinsic Magnetism in Nanosheets of SnO2_{2}: A First-principles Study

    Get PDF
    We propose intrinsic magnetism in nanosheets of SnO2_{2}, based on first-principles calculations. The electronic structure and spin density reveal that pp orbitals of the oxygen atoms, surrounding Sn vacancies, have a non itinerant nature which gives birth to localized magnetism. A giant decrease in defect formation energies of Sn vacancies in nanosheets is observed. We, therefore, believe that native defects can be stabilized without any chemical doping. Nanosheets of different thicknesses are also studied, and it is found that it is easier to create vacancies, which are magnetic, at the surface of the sheets. SnO2_{2} nanosheets can, therefore, open new opportunities in the field of spintronics.Comment: J. Magn. Magn. Mate. 2012 (Accepted

    Layer-by-layer polypyrrole coated graphite oxide and graphene nanosheets as catalyst support materials for fuel cells

    Get PDF
    For the production of advanced types of catalyst support materials, the distinguished properties of graphene nanosheets were combined with the structural properties of conducting polypyrrole by the incorporation of graphene nanosheets into a polymer matrix by the proposed simple and low-cost fabrication technique. A precise tuning of electrical conductivity and thermal stability was achieved by controlling the polymer thickness of randomly dispersed graphene nanosheets. Initially, graphene nanosheets were fabricated in large quantities via a mild chemical synthetic route involving graphite oxidation, ultrasonic treatment, and chemical reduction. Then, polypyrrole/graphene nanosheet composites with improved conductivity, thermal stability, and high surface area were synthesized by in situ polymerization with the different pyrrole feed ratios. Although graphite oxide sheets have electrically insulating property, partially oxidized graphite oxide was also utilized as conductive fillers in polymer matrix. However, polypyrrole/graphene nanosheet composites have better electrical conductivity than polypyrrole/graphite oxide composites

    Layer-by-layer polypyrrole coated graphite oxide and graphene nanosheets as catalyst support materials for fuel cells

    Get PDF
    For the production of advanced type of catalyst support materials, the distinguished properties of graphene nanosheets were combined with the structural properties of conducting polypyrrole by the incorporation of graphene nanosheets into a polymer matrix by the proposed simple and low-cost fabrication technique. A precise tuning of electrical conductivity and thermal stability was also achieved by controlling the thickness of randomly dispersed graphene nanosheets by a layer-by-layer polymer coating. Initially, graphene nanosheets were fabricated in large quantities via a mild chemical synthetic route involving graphite oxidation, ultrasonic treatment and chemical reduction. Then, polypyrrole/graphene nanosheet composites with improved conductivity, thermal stability and high surface area were synthesized by in situ polymerization with the different pyrrole feed ratios. Although graphite oxide sheets have electrically insulating property, partially oxidized graphite oxide was also utilized as conductive fillers in polymer matrix. However, polypyrrole/graphene nanosheet composites have better electrical conductivity than polypyrrole/graphite oxide composites

    Boron Nitride Nanosheets Improve Sensitivity and Reusability of Surface Enhanced Raman Spectroscopy

    Full text link
    Surface enhanced Raman spectroscopy (SERS) is a useful multidisciplinary analytic technique. However, it is still a challenge to produce SERS substrates that are highly sensitive, reproducible, stable, reusable, and scalable. Here, we demonstrate that atomically thin boron nitride (BN) nanosheets have many unique and desirable properties to help solve this challenge. The synergic effect of the atomic thickness, high flexibility, stronger surface adsorption capability, electrical insulation, impermeability, high thermal and chemical stability of BN nanosheets can increase the Raman sensitivity by up to two orders, and in the meantime attain long-term stability and extraordinary reusability not achievable by other materials. These advances will greatly facilitate the wider use of SERS in many fields
    corecore