1,462 research outputs found

    New Trends in Beverage Packaging Systems: A Review

    Get PDF
    New trends in beverage packaging are focusing on the structure modification of packaging materials and the development of new active and/or intelligent systems, which can interact with the product or its environment, improving the conservation of beverages, such as wine, juice or beer, customer acceptability, and food security. In this paper, the main nutritional and organoleptic degradation processes of beverages, such as oxidative degradation or changes in the aromatic profiles, which influence their color and volatile composition are summarized. Finally, the description of the current situation of beverage packaging materials and new possible, emerging strategies to overcome some of the pending issues are discussed

    Bioengineered Textiles and Nonwovens – the convergence of bio-miniaturisation and electroactive conductive polymers for assistive healthcare, portable power and design-led wearable technology

    Get PDF
    Today, there is an opportunity to bring together creative design activities to exploit the responsive and adaptive ‘smart’ materials that are a result of rapid development in electro, photo active polymers or OFEDs (organic thin film electronic devices), bio-responsive hydrogels, integrated into MEMS/NEMS devices and systems respectively. Some of these integrated systems are summarised in this paper, highlighting their use to create enhanced functionality in textiles, fabrics and non-woven large area thin films. By understanding the characteristics and properties of OFEDs and bio polymers and how they can be transformed into implementable physical forms, innovative products and services can be developed, with wide implications. The paper outlines some of these opportunities and applications, in particular, an ambient living platform, dealing with human centred needs, of people at work, people at home and people at play. The innovative design affords the accelerated development of intelligent materials (interactive, responsive and adaptive) for a new product & service design landscape, encompassing assistive healthcare (smart bandages and digital theranostics), ambient living, renewable energy (organic PV and solar textiles), interactive consumer products, interactive personal & beauty care (e-Scent) and a more intelligent built environment

    An Overview of SBIR Phase 2 Materials Structures for Extreme Environments

    Get PDF
    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing Areas in Materials and Structures for Extreme Environments which is one of six core competencies at NASA Glenn Research Center. There are twenty three technologies featured with emphasis on a wide spectrum of applications such as fine-filament superconductor wire, composite oxide cathode materials, nano-composites, high radiation solar cell, wrapped multilayer insulation, thin aerogel, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA

    A review on nano fibre technology in polymer composites

    Get PDF
    The enormous attention and interest by both academics and industrial field for greener, biodegradable and renewable materials implicate a persuasive trends towards the encroachment of nano-materials science and technology in the polymer composite field. Nanocomposites creates high impacts on the development of nano materials with advanced features to solve potential risks with their wider industrial applications. Nano fibres are highly engineered fibres with diameters less than 100 nm that offer several advantages over conventional fibres. One dimensional (1D) nanostructure fillers such as carbon nanofibre and cellulose nanofibre are the most common, promising and unique for developing multifunctional nanocomposites with better properties and extensive applications compared to micro size fibres. Nano fibre technology brings revolution by providing products that are completely safe, truly greener, reliable and environmentally friendly for industries, researchers and users. This review article is intended to present valuable literature data on research and trend in the fields of carbon and cellulose nano fiber, nanocomposites with specific focus on various applications for a sustainable and greener environment

    New Trends in Beverage Packaging Systems: A Review

    Get PDF
    New trends in beverage packaging are focusing on the structure modification of packaging materials and the development of new active and/or intelligent systems, which can interact with the product or its environment, improving the conservation of beverages, such as wine, juice or beer, customer acceptability, and food security. In this paper, the main nutritional and organoleptic degradation processes of beverages, such as oxidative degradation or changes in the aromatic profiles, which influence their color and volatile composition are summarized. Finally, the description of the current situation of beverage packaging materials and new possible, emerging strategies to overcome some of the pending issues are discussed

    Nano-biocomposite films with modified cellulose nanocrystals and synthesized silver nanoparticles

    Get PDF
    Ternary nano-biocomposite films based on poly(lactic acid) (PLA) with modified cellulose nanocrystals (s-CNC) and synthesized silver nanoparticles (Ag) have been prepared and characterized. The functionalization of the CNC surface with an acid phosphate ester of ethoxylated nonylphenol favoured its dispersion in the PLA matrix. The positive effects of the addition of cellulose and silver on the PLA barrier properties were confirmed by reductions in the water permeability (WVP) and oxygen transmission rate (OTR) of the films tested. The migration level of all nano-biocomposites in contact with food simulants were below the permitted limits in both non-polar and polar simulants. PLA nano-biocomposites showed a significant antibacterial activity influenced by the Ag content, while composting tests showed that the materials were visibly disintegrated after 15 days with the ternary systems showing the highest rate of disintegration under composting conditions.L.V. would like to acknowledge the financial support from MIUR, PRIN 2010–11 project entitled “Nanomed” (prot.2010FPTBSH 009). M.P. and A.J. acknowledge the financial support from the Spanish Ministry of Economy and Competitiveness (MAT2011-28648-C02-1)

    Value chains as a linking-pin framework for exploring governance and innovation in nano-involved sectors: illustrated for nanotechnologies and the food packaging sector

    Get PDF
    Consultable sur Internet : http://ejlt.org//article/view/104/180International audienceNanotechnology is often referred to as an entity in itself, a promising technoscience that may enable a vast array of products that will affect and change society. Looking beneath the umbrella-term of "nanotechnology" what is actually occurring with regards to the emergence of product/applications? And what does this mean for governance of emerging nano-involved product development and societal uptake?. The article argues that one must move beyond the broad umbrella term of nanotechnology to explore governance challenges. It posits that for exploring governance of nano-applications, a much ignored level of analysis - the industrial value chain - is a promising level of analysis in both identifying the current activities and potential impacts of nanotechnology and the modes of governance that are in play, how they evolve and how they could be shaped. Focusing on value chains is important for the near and mid-term in order to evaluate and characterise the smorgasbord of techno-scientific promises stemming from nanotechnology and the effects of broader sectoral changes on potential nano-enabled products that may reach citizen-consumers. As nanotechnology enters various parts of the agrifood sector, the emerging governance arrangements of nanotechnology meet incumbent (and still developing) governance regimes, consumer positions and actor arrangements. The paper further articulates this claim, closing with an outlook on what sort of approaches could be used for foresighting potential developments in nanotechnology, their impacts and potential frameworks for exploring and modulating nanotechnology governance

    Synthesis & Characterization of Silica Coated Iron Oxide Nanoparticles by Sol-Gel Technique

    Get PDF
    \alphaFe2O3-Fe_2O_3 nanoparticles and Silica Coated Fe2O3Fe_2O_3 Particles were synthesized by hydrothermal method and acid - base hydrolysis of TEOS respectively. The Core Shell Particles has been characterized by SEM, XRD, and Particle size analysis. From particle size analysis, it was seen that, the distribution maxima of Fe2O3Fe_2O_3 and Fe2O3@SiO2Fe_2O_3@SiO_2 coated nanoparticle were of 120 & 350 nm, 150nm & 550 nm respectively. From XRD analysis, it was confirmed that silica sample nanoparticles is amorphous in nature.The SEM/EDX analysis data represents the presence of Fe2O3@SiO2Fe_2O_3@SiO_2 and show only the compositions of Si ,O & Fe2O_3 peaks. As Fe2O3Fe_2O_3 nanoparticles show applications in many fields including high density magnetic storage devices, ferrofluids, magnetic refrigeration systems, and catalysis. Aggregation of nanoparticles can be prevented by coating the particles with other materials. The core/shell structure enhances the thermal and chemical stability of the nanoparticles, improves solubility, makes them less cytotoxic and allows conjugation of other molecules to these particles

    Ancient and historical systems

    Get PDF

    Kinetic desorption models for the release of nanosilver from an experimental nanosilver coating on polystyrene food packaging

    Get PDF
    To predict the kinetic desorption of silver from an experimental nanosilver coated polystyrene food packaging material into food simulants (0, 1, 2 and 3% acetic acid (HAc) in distilled water (dH2O)) at 4 temperatures (10, 20, 40 and 70 °C), 5 sorption models were examined for their performance. A pseudo-second order kinetic sorption model was found to provide the best prediction of an unseen desorption validation dataset with R2 = 0.90 and RMSE = 3.21. Poor predictions were witnessed for desorption at 70 °C, potentially due to re-adsorption of the silver back onto the polystyrene substrate, as shown in the kinetic migration experiments. Similarly, the temperature dependence of the desorption rate constant was satisfactorily described using the Arrhenius equation with the exception of the 70 °C scenario. The use of sorption models identified scenarios that may limit human exposure to nanosilver migrating from this experimental nanocoating, i.e. low temperature applications. Industrial relevance: The use of antimicrobial packaging has the potential to reduce food spoilage and risk from pathogenic microorganisms while reducing food waste by extending the shelf life of food products. Coating of antimicrobial silver nanoparticles (AgNPs) to polymer surfaces is a highly advantageous technology as microbial contamination predominantly occurs on the surface of fresh and processed food products. However, uncertainty related to the potential release of nanoparticles from food packaging materials, subsequent potential human exposure and toxicology is a barrier to the uptake of these novel materials. In the European Union, where the safety assessment of these materials is stringent, mathematical models used to predict the worst case migration of nanoparticles from food packaging materials have supported the acceptance of some nanomaterials for use in food packaging. The performance of a number of desorption models was evaluated to predict the release of AgNPs from AgNP coated polystyrene. The model identified factors that influenced migration and possible industrial applications for the developed material to minimise human exposure. The study highlights the potential benefits of using predictive models to assess migration of NPs from polymers into food simulants instead of time consuming and expensive migration studies
    corecore