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Abstract 

To predict the kinetic desorption of silver from an experimental nanosilver coated 

polystyrene food packaging material into food simulants (0, 1, 2 and 3% acetic acid (HAc) in 

distilled water (dH2O)) at 4 temperatures (10, 20, 40 and 70 °C), 5 sorption models were 

examined for their performance. A pseudo-second order kinetic sorption model was found to 

provide the best prediction of an unseen desorption validation dataset with R
2
 = 0.90 and 

RMSE = 3.21. Poor predictions were witnessed for desorption at 70 °C, potentially due to re-

adsorption of the silver back onto the polystyrene substrate, as shown in the kinetic migration 

experiments. Similarly, the temperature dependence of the desorption rate constant was 

satisfactorily described using the Arrhenius equation with the exception of the 70 °C 

scenario. The use of sorption models identified scenarios that may limit human exposure to 

nanosilver migrating from this experimental nanocoating, i.e. low temperature applications. 

 

Keywords: nanoparticle, nanosilver, migration, modelling, desorption, food packaging, 

coating, nanoparticle tracking analysis. 
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1. Introduction 

Each year roughly one third of all food produced is lost due to food waste (FAO 

2011). A large portion of these losses are accrued during transport and storage due to 

microbial spoilage. Active nanopackaging incorporating antimicrobial nanoparticles having 

dimensions in the size range 1-100 nm, are providing a solution to this issue by improving 

food shelf life through inactivation of spoilage microorganisms. Silver nanoparticles (AgNPs) 

have been the subject of many research studies due their antimicrobial efficacy against both 

gram negative and gram positive bacteria (Azlin-Hasim, Cruz-Romero, Cummins, Kerry, & 

Morris, 2016), yeast and mould (Mohammed Fayaz, Balaji, Girilal, Kalaichelvan, & 

Venkatesan, 2009). In recent years, a number of antimicrobial nanosilver food contact 

materials have appeared on the global market such as; food storage boxes, food storage bags, 

children’s sippy cups, cutting boards and refrigerators (Maynard and Michelson 2016).  

Despite the use of nanosilver for food contact applications in many countries, there 

are concerns that have been raised related to the potential size driven increase in nanoparticle 

mobility within food, food packaging and the human gastro-intestinal tract, with potential 

bioaccumulation and toxic effects (Souza & Fernando, 2016). These concerns are heightened 

by the lack of knowledge regarding the influence of physicochemical properties on changes 

in release, transport and toxicity mechanisms of nanoparticles compared to their bulk 

counterparts. To assess the safety of these materials and fill gaps in knowledge a case-by-case 

strategy has been proposed by government bodies including the European Food Safety 

Authority (EFSA 2011). Considering the significant uncertainty which surrounds aspects of 

engineered nanomaterial (ENM) safety, this strategy is considered the most responsible 

approach for the safe development of ENMs in the food industry. Weaknesses in this strategy 

can be linked to additional financial and animal costs accrued during the risk assessment of 
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ENMs and this has contributed to views that a case-by-case strategy is not optimal in the long 

term (Amenta et al., 2015). Therefore, more efficient risk assessment approaches are 

necessary to reduce the burden associated with this case-by-case testing strategy. The EFSA 

(2011) proposed a scenario were reduced toxicity testing would be required in the event that 

diminished human exposure could be proven. In the European Union, a limited number of 

ENMs have been accepted for use as food contact materials. These ENMs, which include 

titanium nitride (TiN) (European Commission 2012), silicon dioxide (European Commission 

2016) and three cross linked block copolymers (European Commission 2015) have been 

accepted for use in the EU due to migration tests and migration modelling which support a no 

exposure scenario. Predictive migration models for additives and contaminants from food 

packaging materials are well established and accepted in many regulatory jurisdictions 

(Begley, 1997; Baner, Brandsch, Franz, & Piringer, 1996). Predictive migration models offer 

a more economical and time saving approach to determine migration from packaging than 

experimental migration studies. 

In the literature, there are limited studies that investigate the potential migration of 

nanoparticles from nanoparticle food packaging materials and coatings (Kuorwel, Cran, 

Orbell, Buddhadasa, & Bigger, 2015), and even fewer studies that have investigated 

predictive migration models for the release of nanoparticles from food packaging coatings 

(Hannon, Kerry, Cruz-Romero, Morris, & Cummins, 2015). Migration predictive models 

have been proposed to model the migration of nanoparticles from nanoparticle filled food 

packaging materials (Bott, Störmer, & Franz, 2014; Simon, Chaudhry, & Bakos, 2008; von 

Goetz et al., 2013). However, these migration models focus on nanopackaging were 

nanoparticles are immobilised within the walls of polymer substrate and diffusion is the 

driving mechanism for migration. These models are not suitable for the prediction of 

nanoparticle migration from nanocoatings, were nanoparticles are concentrated at the surface 
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of the packaging and rely on desorption or dissolution as the main migration mechanism. To 

the best of the author’s knowledge, only one study has investigated the predictive migration 

modelling of nanoparticles from nanocoatings (Hannon et al. 2016c). The study uses artificial 

neural networks to predict the migration of nanosilver from a nanosilver spray coated LDPE 

substrate, but provides limited mechanistic information for the desorption process due to the 

black box nature of the model. 

The objective of this study was to investigate a number of kinetic sorption models to 

predict the desorption of AgNPs from a nanosilver coated polystyrene experimental food 

grade material into food simulants. 

 

2. Materials and Methods 

2.1. Nanocomposite manufacture 

AgNPs were synthesised using a method adapted from Chen et al., (2009). An ethanolic 

solution of silver nitrate (AgNO3) (0.1 M AgNO3, Sigma Aldrich, Ireland) was heated to 30 

°C and an equal amount of 0.1 M Polyvinylpyrrolidone (PVP) solution (PVP, Mw = 40,000, 

Sigma Aldrich, Ireland) in ethanol (>99.5% ethanol, Sigma Aldrich, Ireland) was added at a 

rate of 0.667 ml/min using a programmable peristaltic pump (Dose It P910, Integra 

Biosciences AG Switzerland). The solution was stirred at a rate of 800 rpm for 2 h on a hot 

plate magnetic stirrer device (MSH-20D,Wise Stir, Korea), and the solution had turned a 

stable orange-brown colour. AgNPs were separated by addition of acetone (Sigma Aldrich, 

Ireland) at a volume ratio of approximately 1:4, respectively. The solution was then sonicated 

using an ultrasonicator (Cole-Palmer 8891) for 10 min and centrifuged at 6000 rpm for 15 

min in a Beckman J2-21 centrifuge (Beckman Instruments Inc., USA). The supernatant was 

discarded and the pellet was re-dispersed in ethanol. The separation step was repeated once 
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again, and the pellet was dried in an oven overnight at 60 °C and finally crushed into a 

powder. 

AgNPs (0.5 wt. %) were dissolved in ethanol, sonicated for 5 min and directly poured onto a 

405 mm × 305 mm high impact polystyrene (HIPS) tray (Barkstone plc, UK). HIPS trays 

containing AgNP solutions were then placed in an oven at 60 °C for 24 h in order to 

evaporate remaining solvent. The AgNP coated tray was rinsed with dH2O to remove any 

unattached AgNPs and kept in an environmental chamber (T =25 °C, RH = 50%) until further 

analysis.  

 

2.2. Determination of AgNP loading in coating 

The total concentration of silver in the nanosilver coated polystyrene material was 

determined by heat assisted digestion with 10 ml HNO3 followed by ICP-AES analysis. For 

each 1 × 1 cm
2
 sample, the surface was sliced with a disposable scalpel and the shavings were 

collected in a PTFE vessel. A 10 ml volume of concentrated nitric acid (69% HNO3, VWR 

International, Dublin, Ireland) was transferred to each digestion vessel which was sealed with 

a rupture membrane in place. The vessels were placed in an oven (Plus II Oven, Gallenkamp, 

Loughborough, U.K.) at 120 °C for 5 hours. Once the digestion was complete, the digestate 

was filtered through a 0.45 µl syringe filter and 200 µl digestate was diluted in 9.8 ml of 

milli-Q water (18 MΩcm, PURELAB Option-Q, Elga, U.K.) for analysis by ICP-AES.  

 

2.3. Migration study  

The release of silver from the experimental nanosilver coated polystyrene food grade 

material (sample size 1 cm × 1 cm) was initiated by total immersion in 10 ml of one of the 

food simulants (0, 1, 2 and 3% HAc in dH2O) at a given temperature (10, 20, 40 and 70 °C) 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

8 

 

for 5 days. Food simulants were prepared by volumetrically diluting concentrated HAc 

(>99% Acetic acid, Sigma Aldrich, Arklow, Ireland) in dH2O to the desired concentration. To 

investigate the kinetic behaviour of silver release 200 µl aliquots, without replacement, were 

sampled at time points (0.25, 0.5, 1, 2, 3, 6, 12, 24, 48, 72, 96 and 120 h) up to 5 days. The 

silver concentration readings from ICP-AES analysis were subsequently corrected to account 

for the removal of small aliquots from the food simulants. Each aliquot was diluted with 9.8 

ml of milli-Q water acidified with 200 µl 69% HNO3 and 100 µl HCl (37% HCl, Sigma 

Aldrich, Ireland) prior to ICP-AES analysis. Each scenario of temperature/pH was tested in 

replicate (n = 2 samples, 6 replicate ICP-AES readings). 

 

2.4. Inductively Coupled Plasma – Atomic Emission Spectrometry 

The concentration of total silver (ionic and NP) in the coating and migrant solutions 

was determined using the ICP-AES technique (Vista Pro RL, CCD simultaneous ICP-AES, 

Varian, Victoria, Australia). The instrument was purged with argon gas for 20 min and 

allowed to equilibrate for 50 min prior to analysis. The ICP-AES was calibrated using four 

standards (0.001, 0.005, 0.01 and 0.1 mg/l) produced by serial dilution of a 1000 mg/l silver 

nitrate standard (1000 mg/l AgNO3, Elementec, Kildare, Ireland). Samples that had silver 

concentrations above this range were diluted and retested accordingly. All samples tested 

were spiked with yttrium as an internal standard. All glassware and sample containers used in 

the preparation and testing of the samples were immersed overnight in 5% HNO3 aqueous 

solution and then rinsed with copious amounts of dH2O before being used in migration 

studies or total digestions. 
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2.5. Nanoparticle tracking analysis (NTA) 

To obtain the size distribution of nanoparticles following migration studies, a AgNP-

coated polystyrene sample (1 cm × 1 cm) was immersed in 10 ml dH2O at 20 °C and after 30 

min a 1 ml aliquot was removed and tested using the NTA technique (Nanosight NS300, 

Malvern, U.K.) as outlined by Hannon et al. (2016b). 

 

2.6. Scanning Electron Microscopy and Transmission Electron Microscopy 

Scanning electron microscopy combined with energy dispersive X-ray (FEI Quanta 

3D FEG DualBeam, Hillsboro, U.S.A.) was used to identify and characterise AgNPs in the 

nanosilver coating and in the food simulants used for migration studies. The polystyrene 

substrate was immobilised coated side up on a SEM stub using double sided carbon tape and 

sputter coated with gold using an Emitech K575X Sputter Coating Unit (Quorum 

Technologies Ltd., Kent, U.K.) before being imaged using SEM. For food simulants 

containing migrant silver, a 5 µl aliquot was pipetted onto aluminium foil mounted on a SEM 

stub and dried under ambient conditions covered with a petri dish. Once dry, the food 

simulants were gold coated and imaged using SEM-EDX. Particle measurements were 

performed using the Fiji programme (Schindelin et al., 2012) following the image processing 

steps outlined in Hannon et al. (2016b). 

Further characterisation of nanoparticles in the dH2O and 3% HAc food simulants was 

performed by drying 5 µl aliquots of the food simulants on 200 mesh copper grids (Electron 

Microscopy Sciences, U.S.A.) for analysis by transmission electron microscopy (FEI Technai 

F30 transmission electron microscope, Hillsboro, U.S.A.). 
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2.7. Statistical Analysis 

Statistical analysis of the migration data was conducted in the StatTool 6.3 program 

(Palisade, Middlesex, U.K.). To perform a sensitivity analysis of the factors influencing the 

migration of AgNPs into the food simulants (temperature, time and pH) a Pearson’s 

correlation analysis was conducted. Temperature (10, 20, 40 and 70 °C), time (at each time 

point) and pH (6.55, 2.75, 2.61 and 2.58) were all set as independent numeric variables and 

migration was set as the dependent numeric variable. 

3. Desorption modelling 

3.1. Kinetic desorption models 

The location of the nanosilver at the coating substrate-food simulant interphase 

impacted on the type of migration model used to predict the release of AgNPs. In this 

instance, the particles are not required to diffuse through the plastic packaging but rather 

desorb or dissolute from the surface. Due to uncertainties regarding the rate controlling 

process (i.e. desorption or dissolution) responsible for AgNP migration from the polystyrene 

surface, a number of kinetic adsorption-desorption models were considered (Table 1). To 

obtain details of the sorption processes governing the migration of AgNPs, the performance 

of the five sorption models, which are each associated with various rate controlling migration 

processes and boundary conditions, was assessed. 
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Table 1 

     Kinetic sorption models used to predict the desorption of AgNPs from a nanosilver coated polystyrene material 

Models Linearized equation Constants   

Plot to 

determine 

constants 

Reference 

First order                   
   

     
  

   

First order sorption 

rate constant           

against   

(Lagergren, 

1898) 

   

Sorption amount at 

equilibrium 

Second 

order 

 

  
 

 

     
  

 

  
    

Second order 

sorption rate 

constant 

 

  
 against t 

(Ho & 

McKay, 

1999) 

Intraparticle       
      

   
Intraparticle rate 

constant    against      

(Weber and 

Morris, 1963) 

  constant 

Elovich                       
  constant    against 

       
(Low, 1960) 

  constant 

Fractional 

power 

model 

                      

 

  

constant        against 

       
(Dalal, 1974) 

  constant 

 

For each of the models tested, there are a set of assumptions and boundary conditions 

which may influence their ability to effectively predict migration of silver from polystyrene 

(Largitte & Pasquier, 2016). The pseudo-first and second order models assume; sorption only 

occurs on localised sites, there are no interactions between adsorbates, the adsorbate 

concentration is constant, a saturated monolayer on the adsorbent corresponds to the 

adsorbents maximum adsorption capacity and the adsorbent surface coverage does not 

influence the energy of adsorption. Both models differ through their governance by a pseudo-

first order and second order rate equation. Similar to the pseudo-first and second order 
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models, the Elovich model assumes that sorption only occurs on localised sites and the 

adsorbate concentration is constant. The Elovich model accounts for interactions between 

adsorbates and assumes negligible adsorption prior to the exponential and a linear 

relationship between adsorption energy and surface coverage. The intraparticle diffusion 

model or Weber and Morris model (1963) assumes that the adsorption-desorption process is 

controlled by intraparticle pore diffusion and/or boundary layer diffusion. The model assumes 

that the boundary layer is constant and the thickness of the boundary layer is related to the 

intercept of a plot of qt vs t
0.5

 (Al-Rashdi, Tizaoui, & Hilal, 2012). The fractional power 

model (Dalal, 1974) which is a modified form of the Freundlich equation, is applied in 

systems where the adsorbent is assumed to have a heterogeneous surface and multilayer 

adsorption occurs. 

It is important to note differences between the sorption boundary conditions in this 

study to those used to derive each of the kinetic sorption models presented in Table 1. For 

each of the kinetic sorption models, the boundary conditions assume that at the beginning of 

the sorption process the sorbent does not contain sorption material (t = 0, q(0) = 0). For a 

desorption problem, this is not the case as the sorbent contains all of the sorption material at 

the initial time point (t = 0, q(0) = qi). In addition, it is assumed that during the formation of 

the nanosilver coating, the adsorption of PVP-coated AgNPs onto polystyrene did not reach 

equilibrium (i.e. unsaturated surface with fractional AgNP coverage) and that a homogeneous 

monolayer of dispersed AgNPs was formed (Supplementary information Fig. S1), as the 

AgNP’s PVP-coating would not be conducive to multilayer formation. To comply with the 

boundary conditions of each of the kinetic sorption models, the sorption process is considered 

for the absorption of AgNPs into the food simulants and the remaining AgNPs in the coating 

is determined using Eq. 1. 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

13 

 

                              (1) 

 

Where       is the concentration of nanosilver in the packaging coating at time t,         is 

the initial concentration of nanosilver in the coated material and        is the amount of 

nanosilver absorbed into the food simulant at time t. It is assumed that differences in partition 

coefficients between the nanocoating and highly aqueous food simulants is negligible and 

migration processes into each of the food simulants can be described by the same model 

parameters (Franz & Störmer, 2008). 

Each of the models is provided in a linear form that can be used to predict sorption 

rate constants and other sorption properties (qe) by plotting different configurations of the 

kinetic parameters, q(t) and t. The sorption rate constants are then determined from the slope 

and intercept of the produced linear regression line. Each of the models was validated using 

leave-one-out cross validation method, which randomly selected 20% of the total migration 

dataset. To calibrate and validate each of the models to account for uncertainty and variability 

in the input datasets Monte Carlo simulations were carried out using the @Risk software 

(Palisade, Middlesex, U.K.) and the number of iteration runs was set to 10,000 iterations. 

 

3.2. Arrhenius equation – influence of temperature on sorption rates 

In a previous study, temperature contributed significantly to the release of silver from 

nanosilver food packaging coatings (Hannon et al., 2016a). Therefore, to take into account 

the influence that temperature has on the desorption rate of AgNPs from nanosilver coated 

polystyrene, the Arrhenius equation was employed (Eq. 2) 

 

                      (2) 
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Where   is the ideal gas constant (8.31 J/Kmol),    is the activation energy,   is the absolute 

temperature (K),   is the exponential factor and   is the desorption rate constant. A plot of 

      against 1/T is used to determine the activation energy and exponential factor for the 

system. 

3.3. Thermodynamic considerations 

To gain a greater understanding of the AgNPs desorption process, thermodynamic 

properties of the system were determined using the Van’t Hoff equation (Eq. 3). 

 

         
   

  
    

   

  
   

   

 
        (3) 

 

Where    is the equilibrium rate constant,   is the ideal gas constant,   is the absolute 

temperature in the system,     is the Gibbs free energy,     is the change enthalpy and     

is the change in entropy. These parameters were determined from the slope and intercept of a 

plot of        against 1/T.    is a ratio of the initial concentration of silver in the coating to 

the equilibrium concentration of silver in the coating (Eq. 4) (El Boujaady, Mourabet, 

Bennani-Ziatni, & Taitai, 2014). 

 

   
       

  
           (4) 
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4. Results and Discussion 

4.1. Characterisation of AgNPs in coating and food simulants – SEM and TEM 

The identification and characterisation of nanoparticles at different stages of a food 

product lifecycle has been emphasised in risk assessment guidance documents for the 

industry (EFSA 2011). In this study, TEM and SEM-EDX were used to identify and 

characterise nanoparticles at each hypothetical lifecycle stage; raw materials used for 

manufacture, manufactured material and migration of AgNPs from the manufactured material 

into food. The size distribution of AgNPs used for the manufacture of the nanocoating 

measured using TEM had a mean size of 12.5 nm (n = 1074 at 3 locations). When 

immobilized on the surface of the polystyrene a size distribution measured in 5 different 

locations had mean size 78.9 nm and mode of 43 nm (n = 811). A potential cause of the 

increase in size distribution may have occurred as a result of agglomeration/aggregation 

during the manufacturing process. Another possible contributing factor to the increased size 

distribution may be due to the limited resolution provided by the SEM technique, used to 

characterise particles in the AgNP precursor solution used to manufacture the nanocoating 

and particles observed in the food simulants.  

Following migration studies at 70 °C for 2 h, food simulants were imaged using TEM 

and SEM-EDX to obtain size distributions covering a wider size range than a single 

technique on its own. A noteworthy finding was the absence of nanoparticles in the 3% HAc 

imaged by both TEM and SEM-EDX. Nanoparticles with characteristic silver atom spacing 

(~0.28 nm (Desireddy et al., 2013; Ma et al. 2012)) of 0.23 nm were observed in dH2O (Fig. 

1g) after incubation at 70 °C for 2 h by TEM analysis and agglomerates of silver were 

observed by SEM, confirmed by silver element maps obtained using EDX technique that 

were overlaid on the SEM images (Fig. 1h). As the TEM and SEM techniques both rely on 
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samples to be dried prior to analysis, the NTA technique was used to determine the 

hydrodynamic diameter of nanoparticles in the dH2O following migration studies (Fig. 2). 

Although AgNPs were observed in dH2O following migration studies with a mean size of 

30.18 nm (Fig 1e and 1f, n = 79), it is important to note that there was a limited number of 

particles identified on the TEM grids. The low number of particles identified could have been 

due to low AgNP concentrations present in the food simulants relative to the volume of food 

simulant dried on the copper grid for testing using the TEM technique (~5 µl). The low 

number of AgNPs per µl would make their identification difficult. Therefore, the use of the 

NTA technique which has a high sample throughput can be advantageous in providing 

statistically reliable size distributions. 
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Fig. 1. TEM image of a) AgNPs used to coat the polystyrene surface and b) corresponding 

size distribution, c) SEM image of nanosilver coating on polystyrene and d) corresponding 
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size distribution, e) TEM image of AgNPs in dH2O after 2 h at 70 °C and f) corresponding 

size distribution, g) high magnification TEM image of one of the particles in image e), and h) 

SEM image of AgNPs in dH2O after 2 h at 70 °C with silver element maps overlapped. 

 

 

Fig. 2 Size distributions of nanoparticles identified in dH2O compared to the size distribution 

of nanoparticles identified on the AgNP-coated polystyrene. 

 

4.2. Kinetic desorption model performance 

The migration kinetics of nanoparticles from food contact materials is an area of 

research where there is a lack of knowledge related to mechanisms of action, particularly for 

nanocoatings. A number of sorption models were tested for their performance when used to 

predict the desorption of AgNPs from a nanosilver coated material under ideal conditions 

using food simulants. The performance of the five models is summarised in Table 2. In this 

study, no adsorption-desorption isotherms were determined, due to the circumstances in 

which the desorption reaction occurred. Although isotherms play a significant role in 
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adsorption-desorption systems, it was assumed that the maximum adsorption capacity of 

silver on the polystyrene surface was not reached during manufacture and that silver 

saturation in the food simulant did not occur at equilibrium migration. For the manufacture of 

the nanosilver coating, a fixed concentration of silver was used, that was optimised for 

antimicrobial efficacy of the final nanocoating. For the food simulants, far higher silver 

concentrations have been achieved in solutions without reaching saturation conditions (Loza 

et al., 2014). For these reasons, adsorption-desorption isotherms were not considered in this 

study and instead a focus was placed on kinetic desorption models to predict migration. 

 

Table 2  

   Performance of the sorption models used to predict AgNP migration from a nanosilver 

coating on polystyrene into food simulants 

Models Calibration Validation 

  R
2
 RMS Error R

2
 RMS Error 

First order 0.46 8.84 0.02 14.32 

Second order 0.92 2.99 0.90 3.21 

Intraparticle 0.88 3.70 0.81 4.61 

Elovich 0.92 3.02 0.89 3.47 

Power function 0.86 4.10 0.80 5.33 

 

On inspection of the R
2
 and RMS Error values in Table 2, the pseudo-second order 

sorption model was found to produce the best fit of the calibration dataset and predict the 

validation dataset with the least error. The Elovich, Intraparticle and Power Function also 

provided satisfactory fitting and prediction of the calibration and validation datasets. The 

superior prediction of migration provided by the pseudo-second order model implies that the 
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AgNPs form a monolayer on the polystyrene surface via a chemisorption mechanism and the 

migration process is controlled by a second order rate equation. This finding of a 

chemisorption mechanism is supported by the satisfactory determination coefficient obtained 

for the Elovich model which is used for chemisorption systems and also suggests a 

heterogeneous adsorption surface. The weaker predictions provided by the intraparticle 

diffusion model reduces the possibility of a diffusion rate controlling mechanism existing 

within the system (Akpomie, Dawodu, & Adebowale, 2015). Among the five models tested 

the only model that did not have satisfactory performance was the pseudo-first order sorption 

model. This is a significant finding as it greatly reduces the likelihood of dissolution, which 

has been associated with the pseudo-first order rate equation (Hahn, Brandes, Wagener, & 

Barcikowski, 2011), being a significant rate controlling mechanism in the AgNP migration 

process (Supplementary information Fig. S2-5).  

Representative plots showing the performance of the pseudo-second order desorption 

model are shown in Fig. 3. From both plots it is evident that for each of the models tested the 

error increased with increasing silver migration.  
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Fig. 3. Scatterplots showing a) experimental against predicted migration and b) experimental 

migration against residuals (+ = calibration dataset and ○ = validation dataset). 
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4.3. Thermodynamic considerations for the desorption process 

Table 3 

Desorption thermodynamic parameters 

 

T T qi qe Ke ΔG
Θ
 ΔH

Θ
 ΔS

Θ
 

% HAc (°C) (K) mg/kg mg/kg 

 

kJ/mol kJ/mol J/mol 

0 % 

HAc 10 283.15 57 52.99 0.08 6.07 38.15 115.30 

  20 293.15 57 50.08 0.14 4.82     

  40 313.15 57 27.25 1.09 -0.23     

  70 343.15 57 27.75 1.05 -0.15     

                  

1% HAc 10 283.15 57 47.69 0.20 3.85 40.17 129.49 

  20 293.15 57 42.26 0.35 2.57     

  40 313.15 57 18.56 2.07 -1.90     

  70 343.15 57 13.14 3.33 -3.43     

                  

2% HAc 10 283.15 57 50.70 0.12 4.91 50.73 162.49 

  20 293.15 57 42.85 0.33 2.70     

  40 313.15 57 29.26 0.95 0.14     

  70 343.15 57 8.14 5.99 -5.11     

                  

3% HAc 10 283.15 57 53.10 0.07 6.15 41.84 257.95 

  20 293.15 57 45.27 0.26 3.29     

  40 313.15 57 19.84 1.87 -1.63     
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  70 343.15 57 21.91 1.60 -1.34     

 

From the sensitivity analysis of migration data (Fig. 6) it was noticed that the 

thermodynamics of the system play a significant role in the mechanisms governing the 

detachment of AgNPs from the polystyrene surface. To gain a greater understanding of the 

energies governing the desorption process at the coating-food simulant interphase, the 

Arrhenius equation and Van’t Hoff equation were used to determine the exponential factor, 

activation energy, Gibbs free energy, change in enthalpy and change in entropy (Fig. 4a and 

b). For each of the food simulants, the Gibbs free energy is found to be increasingly negative 

showing that the process is endothermic in nature. This finding is also supported by the 

positive values for ΔH
Θ
 obtained. The high magnitude of ΔH

Θ
 suggests that the main 

mechanism governing the attachment of AgNPs on the polystyrene surface is chemisorption, 

as the ΔH
Θ
 is in the range 40 to 800 kJ/mol, compared to the range 4 to 40 kJ/mol associated 

with a physisorption mechanism (Crini & Badot, 2008). It is proposed that the chemisorption 

mechanism governing PVP-coated AgNP attachment on the polystyrene surface is influenced 

by AgNP-PVP and PVP-polystyrene interactions, as the poor affinity between polar 

hydrophilic silver and non-polar hydrophobic polystyrene have been reported in previous 

studies (Youssef & Abdel-Aziz, 2013; Pongnop, Sombatsompop, Kositchaiyong, & 

Sombatsompop, 2011; Krystosiak, Tomaszewski, & Megiel, 2017). To facilitate the 

attachment of AgNPs on polystyrene, the Ag
+
 ions are reduced to AgNPs in the presence of 

PVP. During the formation of PVP-coated AgNPs, the carbonyl group on PVP’s pyrrolidone 

ring have a strong influence on the interaction between PVP and Ag
+
 (Chen et al. 2009; Gao 

et al., 2014). Once the PVP-coated AgNPs are formed, their attachment to the polystyrene 

surface is enabled through the interaction between the amide nitrogen present on the PVP’s 

side chains and sulphate groups on the polystyrene surface (Smith, Meadows, & Williams, 
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1996). The occurrence of a chemisorption mechanism demonstrates the efficiency of the 

coating mechanism for the attachment of AgNPs onto the polymer for controlled release, 

unlike a physisorption mechanism that would provide a weak bonding of the AgNPs to the 

polystyrene surface. This finding also explains why the pseudo-second order kinetic sorption 

model provided the best fit of the experimental migration data, as this model is suited towards 

chemisorption systems (Febrianto et al., 2009). The high values of ΔS
Θ
 for the system are 

typical of a dissociative mechanism for the desorption process and indicates increasing 

randomness in the system (Akpomie, Dawodu, & Adebowale, 2015). This is particularly true 

considering the energy being introduced into the system in the form of heat.  

The temperature dependence of the desorption process was described using the 

Arrhenius equation (Fig. 4b). An important finding observed in this plot is the increased 

pseudo-second order desorption rate (k2) at the highest temperature of 70 °C. This non-linear 

behaviour at higher temperatures suggests that there is a change in the rate controlling 

process for AgNP migration. A potential rate limiting process may involve the increased 

dissolution of AgNPs into Ag
+
 ions at higher temperatures (Kittler, Greulich, Diendorf, 

Köller, & Epple, 2010), which could be potentially re-adsorbed by free carbonyl groups on 

the PVP-AgNP coated polystyrene surface (Zhang et al., 2014; Liu & Hurt, 2010). This 

finding is also supported by a clear decrease in Gibbs free energy with increasing temperature 

which implies that adsorption is more favourable than desorption at higher temperatures. A 

plot of the natural logarithm of the sorption rate constants against inverse absolute 

temperature provided satisfactory linear relationships for each of the food simulants with R
2
 

of 0.78, 0.91, 0.87 and 0.66 for 0%, 1%, 2% and 3% HAc, respectively. Activation energies 

were in the range -61.76 to -47.31 kJ/mol.  
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Fig. 4 a) Van’t Hoff plot showing linear relationship between ln(ke) and 1/Tabs and b) plot of 

natural logarithmic of the second order rate constant (K2) against inverse absolute 

temperature (1/T). 

 

 

 

4.4. Migration assessment of silver from the nanosilver coating  
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Fig. 5. Experimentally determined silver migration from nanosilver coated polystyrene and 

pseudo-second order model fits for food simulants a) dH2O, b) 1% HAc, c) 2% HAc and d) 

3% HAc. 

 

The migration of nanosilver from antimicrobial coated active packaging materials 

provides a complex scenario were migration into the food is necessary to provide 

antimicrobial activity; However, migration should be controlled and limited to reduce human 

exposure to within safe limits. This scenario is different from materials that are under safety 

assessment (e.g. Zinc oxide) or have been approved for use in the EU; such as titanium 

nitride and cross-linked copolymers, that provide their novel function within the walls of the 

food packaging material and present limited or negligible migration. In this study, migration 

from the nanosilver coating exceeded regulatory limits of 0.01 mg/kgfood for unauthorised 

substances (European Commission 2011) and more specifically the migration limits outlined 

by the EFSA for silver migration from food contact materials of 0.05 mg/kgfood (EFSA 2006). 

It should be noted that these limits have exclusions, with ENMs explicitly mentioned. 

Currently, there are no nano-specific migration limits to benchmark the migration of 

nanoparticles from food contact materials. In this study, the equilibrium silver migration 

(mean value for dH2O, 1%, 2% and 3% HAc) from the coated material reached after 12 hours 

was 6.40 ± 1.41 mg/kgfood, 12.01 ± 2.31 mg/kgfood, 31.98 ± 3.44 mg/kgfood and 33.44 ± 1.41 

mg/kgfood when migration were tested at 10, 20, 40 or 70 °C, respectively (Fig. 5). In all 

cases, the migration of silver was a fraction of the initial silver concentration of 9.62 ± 1.45 

mg/dm
2
 (57.72 ± 8.71 mg/kgfood) found in the nanosilver coated material determined by total 

acid digestion.  
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Fig. 6 Sensitivity analysis demonstrating the effect of each experimental parameter on AgNP 

desorption. 

The sensitivity analysis (Fig. 6) indicated that temperature has the most prominent 

influence on the release of AgNPs from the coated material, followed by time and pH. 

Although pH is denoted as having a negative impact on migration of AgNPs, this may be due 

to the increase in migration associated with a decrease in pH from 6.55 to 2.58 with the 

addition of HAc to dH2O to form more aggressive food simulants. A significant finding is the 

lower migration observed for lower temperatures which would suggest the potential use of 

the coated material for cold storage of goods to limit human exposure to AgNPs from the 

coated material. According to the sensitivity analysis, pH was found to have limited effect on 

the release of AgNPs from the nanocoating compared to temperature and time. Although time 

did have an impact on the release of AgNPs, equilibrium concentrations in the food simulants 

were reached within 24 hours and therefore limits the number of applications that could 

benefit from significant shelf life extension while reducing human exposure. This is provided 

that the coating is not used solely for food safety purposes to reduce harmful food pathogens 

in short shelf life products, e.g. shellfish.  
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Considering the high migration observed from this nanosilver coated material into 

food simulants, there needs to be adjustments made to the coating manufacture process to 

minimise the potential risk to humans from oral exposure to AgNPs. In this study, the 

migration falls into a high migration bracket (5-60 mg/kgfood) established by the EFSA 

(2016), that requires extensive data related to human exposure and toxicology. Currently, 

toxicity studies in the literature for AgNPs are sparse and the limited number of studies 

present many contradictions. For example, a human in vivo 14 day oral study using 10 ppm 

(5-10 nm) and 32 ppm (25-40 nm) AgNP doses showed no clinically significant changes in 

human hematologic, urine, metabolic or physical findings (Munger et al., 2014). However, in 

a 14 day in vivo mouse oral toxicity study, 22 nm, 42 nm, 71 nm and 323 nm AgNPs at a 1 

ppm dose caused size dependent transport to organs, significant increases in TGF-β levels in 

serum and B cell distribution (Park et al., 2010). There are also uncertainties surrounding the 

toxic mechanisms of AgNPs which include; the contribution of ionic and nanoform silver to 

silver toxicity, the relationship of AgNP coating on toxicity and the main signalling pathways 

and enzymes responsible for AgNP toxicity (McShan, Ray, & Yu, 2014). Based on the 

uncertainty with regard to AgNP toxicity, it is difficult to conclude on the potential toxicity to 

humans from exposure to migrant AgNPs from this experimental nanosilver coated 

polystyrene material. 

In order to minimise human exposure to migrating AgNPs, a reduction in the initial 

concentration of silver attached in the coating during the manufacture process could be 

performed. Alternatively, adjustments to the coating manufacture process through coating 

treatments could improve chemisorption behaviour between the AgNPs and polystyrene 

substrate, subsequently reducing migration.  
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5. Conclusions 

The momentous task set forth by government agencies to provide a case-by-case 

testing of ENMs used in food contact materials has the potential to hinder the development 

and uptake of these ENMs. Predictive migration models are invaluable tools for the safety 

assessment of nanoparticle food contact materials, as they can be used to bridge gaps in 

experimental data and provide information on the mechanisms driving nanoparticle 

migration. In this study, the desorption of AgNPs from a nanosilver coating on polystyrene 

into food simulants was successfully predicted using a pseudo-second order kinetic sorption 

model, providing satisfactory determination coefficients (R
2

prediction = 0.90) and RMSE = 

3.21. The temperature dependence of the rate of desorption was accounted for using the 

Arrhenius equation up to a temperature of 40 °C. Beyond this temperature, re-adsorption of 

the silver onto the polystyrene substrate was proposed as a cause for the non-log linear 

change in desorption rate constant. Using the Arrhenius equation the pre exponential factor 

and activation energies were determined for the system ranging from 1×10
-12

 to 1×10
-17

 and -

38.11 to -68.07 kJ/mol, respectively. Thermodynamic parameters determined using the Van’t 

Hoff equation show that the desorption process is endothermic in nature, is controlled by 

chemisorption mechanisms and becomes more spontaneous at higher temperatures. These 

findings indicate that the coating process improves the attachment of AgNPs through 

chemisorption mechanisms. Therefore, despite the high migration of nanosilver from the 

coating, there is potential to limit human exposure to nanosilver by enhancing chemisorption 

behaviour during the nanosilver coating manufacture, subsequently improving AgNP 

attachment. 

Following migration studies, spherical AgNPs were discovered in dH2O by TEM 

analysis, however, this could be as a result of formation of AgNPs during the drying process. 
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No nanoparticles were found in the 3% HAc food simulant following migration studies. 

Considering gaps in knowledge related to AgNP toxicity in the human body it is difficult to 

conclude on the safety of the AgNP coated polystyrene material. 

In this work only one AgNP size, shape and surface coating was used in the 

production of the nanocoating. It is recommended that future studies investigate any potential 

size, shape and surface coating dependent changes in desorption rates by applying 

nanoparticles with a combination of these parameters in the nanocoating manufacture. In 

addition, the desorption model should be investigated for its applicability to predict the 

migration of nanoparticles from nanocoatings into real food matrices, to identify possible 

interactions between nanoparticles and components of food. 
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Industrial Relevance 

The use of antimicrobial packaging has the potential to reduce food spoilage and risk 

from pathogenic microorganisms while reducing food waste by extending the shelf life of 

food products. Coating of antimicrobial silver nanoparticles (AgNPs) to polymer surfaces is a 

highly advantageous technology as microbial contamination predominantly occurs on the 

surface of fresh and processed food products. However, uncertainty related to the potential 

release of nanoparticles from food packaging materials, subsequent potential human exposure 

and toxicology is a barrier to the uptake of these novel materials. In the European Union, 

where the safety assessment of these materials is stringent, mathematical models used to 

predict the worst case migration of nanoparticles from food packaging materials have 

supported the acceptance of some nanomaterials for use in food packaging. The performance 

of a number of desorption models was evaluated to predict the release of AgNPs from AgNP 

coated polystyrene. The model identified factors that influenced migration and possible 

industrial applications for the developed material to minimise human exposure. The study 

highlights the potential benefits of using predictive models to assess migration of NPs from 

polymers into food simulants instead of time consuming and expensive migration studies.   
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Highlights 

 Nanoparticles were identified exemplarily in distilled water after migration studies at 

70 °C for 2 h. 

 Pseudo-second order sorption model provided best prediction of silver desorption. 

 Temperature had the most significant effect on silver migration, followed by time and 

pH. 
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