211,785 research outputs found
Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens.
Despite abundant expression of DNA methyltransferases (Dnmts) in brain, the regulation and behavioral role of DNA methylation remain poorly understood. We found that Dnmt3a expression was regulated in mouse nucleus accumbens (NAc) by chronic cocaine use and chronic social defeat stress. Moreover, NAc-specific manipulations that block DNA methylation potentiated cocaine reward and exerted antidepressant-like effects, whereas NAc-specific Dnmt3a overexpression attenuated cocaine reward and was pro-depressant. On a cellular level, we found that chronic cocaine use selectively increased thin dendritic spines on NAc neurons and that DNA methylation was both necessary and sufficient to mediate these effects. These data establish the importance of Dnmt3a in the NAc in regulating cellular and behavioral plasticity to emotional stimuli
Metastatic recurrence in a pancreatic cancer patient derived orthotopic xenograft (PDOX) nude mouse model is inhibited by neoadjuvant chemotherapy in combination with fluorescence-guided surgery with an anti-CA 19-9-conjugated fluorophore.
The aim of this study is to determine the efficacy of neoadjuvant chemotherapy (NAC) with gemcitabine (GEM) in combination with fluorescence-guided surgery (FGS) on a pancreatic cancer patient derived orthotopic xenograft (PDOX) model. A PDOX model was established from a CA19-9-positive, CEA-negative tumor from a patient who had undergone a pancreaticoduodenectomy for pancreatic adenocarcinoma. Mice were randomized to 4 groups: bright light surgery (BLS) only; BLS+NAC; FGS only; and FGS+NAC. An anti-CA19-9 or anti-CEA antibody conjugated to DyLight 650 was administered intravenously via the tail vein of mice with the pancreatic cancer PDOX 24 hours before surgery. The PDOX was brightly labeled with fluorophore-conjugated anti-CA19-9, but not with a fluorophore-conjugated anti-CEA antibody. FGS was performed using the fluorophore-conjugated anti-CA19-9 antibody. FGS had no benefit over BLS to prevent metastatic recurrence. NAC in combination with BLS did not convey an advantage over BLS to prevent metastatic recurrence. However, FGS+NAC significantly reduced the metastatic recurrence frequency to one of 8 mice, compared to FGS only after which metastasis recurred in 6 out of 8 mice, and BLS+NAC with metastatic recurrence in 7 out of 8 mice (p = 0.041). Thus NAC in combination with FGS can reduce or even eliminate metastatic recurrence of pancreatic cancer sensitive to NAC. The present study further emphasizes the power of the PDOX model which enables metastasis to occur and thereby identify the efficacy of NAC in combination with FGS on metastatic recurrence
\u3cem\u3eN\u3c/em\u3e-acetylcysteine Decreases Binge Eating in a Rodent Model
Binge-eating behavior involves rapid consumption of highly palatable foods leading to increased weight gain. Feeding in binge disorders resembles other compulsive behaviors, many of which are responsive to N-acetylcysteine (NAC), which is a cysteine prodrug often used to promote non-vesicular glutamate release by a cystine–glutamate antiporter. To examine the potential for NAC to alter a form of compulsive eating, we examined the impact of NAC on binge eating in a rodent model. Specifically, we monitored consumption of standard chow and a high-fat, high carbohydrate western diet (WD) in a rodent limited-access binge paradigm. Before each session, rats received either a systemic or intraventricular injection of NAC. Both systemic and central administration of NAC resulted in significant reductions of binge eating the WD without decreasing standard chow consumption. The reduction in WD was not attributable to general malaise as NAC did not produce condition taste aversion. These results are consistent with the clinical evidence of NAC to reduce or reverse compulsive behaviors, such as, drug addiction, skin picking and hair pulling
Horizontal distance from continuously working reference GNSS station influence on the position accuracy
The aim of our thesis was to check the effect of distance from the continuously working\ud
GNSS reference station on the accuracy of positioning when using static and kinematic\ud
GNSS surveying methods. Field measurements were carried out at six points in the area\ud
near Ljubljana and Vrhnika at distances from 5 to 25 kilometres from the GNSS continuously\ud
working reference station in Ljubljana. Coordinates of selected points were determined using\ud
rapid static and RTK measuring method. In RTK method a virtual reference station VRS\ud
created near the worksite and permanent station GSR1 were used as reference stations.\ud
When processing the rapid static observations VRS located at different distances from the\ud
worksite was used as the reference. With rapid static we also examined the rule: the\ud
observation time = 10 min + 1 min · b, trajanje where b was the distance from the reference\ud
station. We found out that the observation time needs to be longer if we are further away\ud
from the reference station
mGluR5 antagonism inhibits cocaine reinforcement and relapse by elevation of extracellular glutamate in the nucleus accumbens via a CB1 receptor mechanism.
Metabotropic glutamate receptor 5 (mGluR5) antagonism inhibits cocaine self-administration and reinstatement of drug-seeking behavior. However, the cellular and molecular mechanisms underlying this action are poorly understood. Here we report a presynaptic glutamate/cannabinoid mechanism that may underlie this action. Systemic or intra-nucleus accumbens (NAc) administration of the mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) dose-dependently reduced cocaine (and sucrose) self-administration and cocaine-induced reinstatement of drug-seeking behavior. The reduction in cocaine-taking and cocaine-seeking was associated with a reduction in cocaine-enhanced extracellular glutamate, but not cocaine-enhanced extracellular dopamine (DA) in the NAc. MPEP alone, when administered systemically or locally into the NAc, elevated extracellular glutamate, but not DA. Similarly, the cannabinoid CB1 receptor antagonist, rimonabant, elevated NAc glutamate, not DA. mGluR5s were found mainly in striatal medium-spiny neurons, not in astrocytes, and MPEP-enhanced extracellular glutamate was blocked by a NAc CB1 receptor antagonist or N-type Ca++ channel blocker, suggesting that a retrograde endocannabinoid-signaling mechanism underlies MPEP-induced glutamate release. This interpretation was further supported by our findings that genetic deletion of CB1 receptors in CB1-knockout mice blocked both MPEP-enhanced extracellular glutamate and MPEP-induced reductions in cocaine self-administration. Together, these results indicate that the therapeutic anti-cocaine effects of mGluR5 antagonists are mediated by elevation of extracellular glutamate in the NAc via an endocannabinoid-CB1 receptor disinhibition mechanism
N-acetyl-cysteine, a drug that enhances the endogenous activation of group-II metabotropic glutamate receptors, inhibits nociceptive transmission in humans.
Emerging research seeking novel analgesic drugs focuses on agents targeting group-II metabotropic glutamate receptors (mGlu2 and mGlu3 receptors). N-Acetylcysteine (NAC) enhances the endogenous activation of mGlu2/3 receptors by activating the glial glutamate:cystine membrane exchanger. Here, we examined whether NAC inhibits nociceptive responses in humans and animals. We tested the effect of oral NAC (1.2 g) on thermal-pain thresholds and laser-evoked potentials in 10 healthy volunteers, according to a crossover, double-blind, placebo-controlled design, and the effect of NAC (100 mg/kg, i.p.) on the tail-flick response evoked by radiant heat stimulation in mice.In healthy subjects, NAC treatment left thermal-pain thresholds unchanged, but significantly reduced pain ratings to laser stimuli and amplitudes of laser-evoked potentials. NAC induced significantly greater changes in these measures than placebo. In the tail-flick test, NAC strongly reduced the nocifensive reflex response to radiant heat. The action of NAC was abolished by the preferential mGlu2/3 receptor antagonist, LY341495 (1 mg/kg, i.p.).Our findings show for the first time that NAC inhibits nociceptive transmission in humans, and does the same in mice by activating mGlu2/3 receptors. These data lay the groundwork for investigating the therapeutic potential of NAC in patients with chronic pain
Pituitary Adenylate-Cyclase Activating Polypeptide Regulates Hunger- and Palatability-Induced Binge Eating
While pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the hypothalamic ventromedial nuclei (VMN) has been shown to regulate feeding, a challenge in unmasking a role for this peptide in obesity is that excess feeding can involve numerous mechanisms including homeostatic (hunger) and hedonic-related (palatability) drives. In these studies, we first isolated distinct feeding drives by developing a novel model of binge behavior in which homeostatic-driven feeding was temporally separated from feeding driven by food palatability. We found that stimulation of the VMN, achieved by local microinjections of AMPA, decreased standard chow consumption in food-restricted rats (e.g., homeostatic feeding); surprisingly, this manipulation failed to alter palatable food consumption in satiated rats (e.g., hedonic feeding). In contrast, inhibition of the nucleus accumbens (NAc), through local microinjections of GABA receptor agonists baclofen and muscimol, decreased hedonic feeding without altering homeostatic feeding. PACAP microinjections produced the site-specific changes in synaptic transmission needed to decrease feeding via VMN or NAc circuitry. PACAP into the NAc mimicked the actions of GABA agonists by reducing hedonic feeding without altering homeostatic feeding. In contrast, PACAP into the VMN mimicked the actions of AMPA by decreasing homeostatic feeding without affecting hedonic feeding. Slice electrophysiology recordings verified PACAP excitation of VMN neurons and inhibition of NAc neurons. These data suggest that the VMN and NAc regulate distinct circuits giving rise to unique feeding drives, but that both can be regulated by the neuropeptide PACAP to potentially curb excessive eating stemming from either drive
Oncoplastic central quadrantectomies
Tumors localized in the central quadrant (centrally located breast tumors) have always represented a challenge for the surgeon because of the critical aesthetical matters related to the nipple-areola complex (NAC). Many years of experience with breast cancer patients treated by using various oncoplastic techniques, has allowed us to develop the modified hemibatwing for the treatment of central breast tumors, where the NAC is involved. Modified hemibatwing-along with the removal of the NAC-is a useful oncoplastic technique and it represents an ideal option for the treatment of central tumors because it assures oncological safety, a reduced surgical timetable and greater aesthetical results
- …
