1,431 research outputs found

    UCSY-SC1: A Myanmar speech corpus for automatic speech recognition

    Get PDF
    This paper introduces a speech corpus which is developed for Myanmar Automatic Speech Recognition (ASR) research. Automatic Speech Recognition (ASR) research has been conducted by the researchers around the world to improve their language technologies. Speech corpora are important in developing the ASR and the creation of the corpora is necessary especially for low-resourced languages. Myanmar language can be regarded as a low-resourced language because of lack of pre-created resources for speech processing research. In this work, a speech corpus named UCSY-SC1 (University of Computer Studies Yangon - Speech Corpus1) is created for Myanmar ASR research. The corpus consists of two types of domain: news and daily conversations. The total size of the speech corpus is over 42 hrs. There are 25 hrs of web news and 17 hrs of conversational recorded data.The corpus was collected from 177 females and 84 males for the news data and 42 females and 4 males for conversational domain. This corpus was used as training data for developing Myanmar ASR. Three different types of acoustic models  such as Gaussian Mixture Model (GMM) - Hidden Markov Model (HMM), Deep Neural Network (DNN), and Convolutional Neural Network (CNN) models were built and compared their results. Experiments were conducted on different data  sizes and evaluation is done by two test sets: TestSet1, web news and TestSet2, recorded conversational data. It showed that the performance of Myanmar ASRs using this corpus gave satisfiable results on both test sets. The Myanmar ASR  using this corpus leading to word error rates of 15.61% on TestSet1 and 24.43% on TestSet2

    Developing a Chunk-based Grammar Checker for Translated English Sentences

    Get PDF

    ミャンマー語テキストの形式手法による音節分割、正規化と辞書順排列

    Get PDF
    国立大学法人長岡技術科学大

    Improving Lexical Choice in Neural Machine Translation

    Full text link
    We explore two solutions to the problem of mistranslating rare words in neural machine translation. First, we argue that the standard output layer, which computes the inner product of a vector representing the context with all possible output word embeddings, rewards frequent words disproportionately, and we propose to fix the norms of both vectors to a constant value. Second, we integrate a simple lexical module which is jointly trained with the rest of the model. We evaluate our approaches on eight language pairs with data sizes ranging from 100k to 8M words, and achieve improvements of up to +4.3 BLEU, surpassing phrase-based translation in nearly all settings.Comment: Accepted at NAACL HLT 201

    Demonstrating Positive Obligations: Children's Rights and Peaceful Protest in International Law

    Get PDF
    Recently there has been a significant increase in the involvement of children and young people in protests across the globe. As a result of this increase, children have directly influenced political change but have also faced threats to their safety. This raises distinct children’s rights issues, and the trends identified necessitate both conceptualizing protest involvement from a children’s rights perspective, and critically examining the manner in which the law — at both a national and international level — has approached the involvement of children in such activities. This Article examines the positive obligations of States and argues that children should be recognized as a distinct, valid, and sometimes vulnerable group that has the right to protest and the right to be facilitated in doing so

    Source side pre-ordering using recurrent neural networks for English-Myanmar machine translation

    Get PDF
    Word reordering has remained one of the challenging problems for machine translation when translating between language pairs with different word orders e.g. English and Myanmar. Without reordering between these languages, a source sentence may be translated directly with similar word order and translation can not be meaningful. Myanmar is a subject-objectverb (SOV) language and an effective reordering is essential for translation. In this paper, we applied a pre-ordering approach using recurrent neural networks to pre-order words of the source Myanmar sentence into target English’s word order. This neural pre-ordering model is automatically derived from parallel word-aligned data with syntactic and lexical features based on dependency parse trees of the source sentences. This can generate arbitrary permutations that may be non-local on the sentence and can be combined into English-Myanmar machine translation. We exploited the model to reorder English sentences into Myanmar-like word order as a preprocessing stage for machine translation, obtaining improvements quality comparable to baseline rule-based pre-ordering approach on asian language treebank (ALT) corpus

    Genetic Algorithm (GA) in Feature Selection for CRF Based Manipuri Multiword Expression (MWE) Identification

    Full text link
    This paper deals with the identification of Multiword Expressions (MWEs) in Manipuri, a highly agglutinative Indian Language. Manipuri is listed in the Eight Schedule of Indian Constitution. MWE plays an important role in the applications of Natural Language Processing(NLP) like Machine Translation, Part of Speech tagging, Information Retrieval, Question Answering etc. Feature selection is an important factor in the recognition of Manipuri MWEs using Conditional Random Field (CRF). The disadvantage of manual selection and choosing of the appropriate features for running CRF motivates us to think of Genetic Algorithm (GA). Using GA we are able to find the optimal features to run the CRF. We have tried with fifty generations in feature selection along with three fold cross validation as fitness function. This model demonstrated the Recall (R) of 64.08%, Precision (P) of 86.84% and F-measure (F) of 73.74%, showing an improvement over the CRF based Manipuri MWE identification without GA application.Comment: 14 pages, 6 figures, see http://airccse.org/journal/jcsit/1011csit05.pd
    corecore