8 research outputs found

    A survey on wireless body area networks: architecture, security challenges and research opportunities.

    Get PDF
    In the era of communication technologies, wireless healthcare networks enable innovative applications to enhance the quality of patients’ lives, provide useful monitoring tools for caregivers, and allows timely intervention. However, due to the sensitive information within the Wireless Body Area Networks (WBANs), insecure data violates the patients’ privacy and may consequently lead to improper medical diagnosis and/or treatment. Achieving a high level of security and privacy in WBAN involves various challenges due to its resource limitations and critical applications. In this paper, a comprehensive survey of the WBAN technology is provided, with a particular focus on the security and privacy concerns along with their countermeasures, followed by proposed research directions and open issues

    Lightweight and physically secure anonymous mutual authentication protocol for real-time data access in industrial wireless sensor networks

    Get PDF
    Industrial Wireless Sensor Network (IWSN) is an emerging class of a generalized Wireless Sensor Network (WSN) having constraints of energy consumption, coverage, connectivity, and security. However, security and privacy is one of the major challenges in IWSN as the nodes are connected to Internet and usually located in an unattended environment with minimum human interventions. In IWSN, there is a fundamental requirement for a user to access the real-time information directly from the designated sensor nodes. This task demands to have a user authentication protocol. To satisfy this requirement, this article proposes a lightweight and privacy-preserving mutual user authentication protocol in which only the user with a trusted device has the right to access the IWSN. Therefore, in the proposed scheme, we considered the physical layer security of the sensor nodes. We show that the proposed scheme ensures security even if a sensor node is captured by an adversary. The proposed protocol uses the lightweight cryptographic primitives, such as one way cryptographic hash function, Physically Unclonable Function (PUF) and bitwise exclusive (XOR) operations. Security and performance analysis shows that the proposed scheme is secure, and is efficient for the resource-constrained sensing devices in IWSN

    Designing Novel Hardware Security Primitives for Smart Computing Devices

    Get PDF
    Smart computing devices are miniaturized electronics devices that can sense their surroundings, communicate, and share information autonomously with other devices to work cohesively. Smart devices have played a major role in improving quality of the life and boosting the global economy. They are ubiquitously present, smart home, smart city, smart girds, industry, healthcare, controlling the hazardous environment, and military, etc. However, we have witnessed an exponential rise in potential threat vectors and physical attacks in recent years. The conventional software-based security approaches are not suitable in the smart computing device, therefore, hardware-enabled security solutions have emerged as an attractive choice. Developing hardware security primitives, such as True Random Number Generator (TRNG) and Physically Unclonable Function (PUF) from electrical properties of the sensor could be a novel research direction. Secondly, the Lightweight Cryptographic (LWC) ciphers used in smart computing devices are found vulnerable against Correlation Power Analysis (CPA) attack. The CPA performs statistical analysis of the power consumption of the cryptographic core and reveals the encryption key. The countermeasure against CPA results in an increase in energy consumption, therefore, they are not suitable for battery operated smart computing devices. The primary goal of this dissertation is to develop novel hardware security primitives from existing sensors and energy-efficient LWC circuit implementation with CPA resilience. To achieve these. we focus on developing TRNG and PUF from existing photoresistor and photovoltaic solar cell sensors in smart devices Further, we explored energy recovery computing (also known as adiabatic computing) circuit design technique that reduces the energy consumption compared to baseline CMOS logic design and same time increasing CPA resilience in low-frequency applications, e.g. wearable fitness gadgets, hearing aid and biomedical instruments. The first contribution of this dissertation is to develop a TRNG prototype from the uncertainty present in photoresistor sensors. The existing sensor-based TRNGs suffer a low random bit generation rate, therefore, are not suitable in real-time applications. The proposed prototype has an average random bit generation rate of 8 kbps, 32 times higher than the existing sensor-based TRNG. The proposed lightweight scrambling method results in random bit entropy close to ideal value 1. The proposed TRNG prototype passes all 15 statistical tests of the National Institute of Standards and Technology (NIST) Statistical Test Suite with quality performance. The second contribution of this dissertation is to develop an integrated TRNG-PUF designed using photovoltaic solar cell sensors. The TRNG and PUF are mutually independent in the way they are designed, therefore, integrating them as one architecture can be beneficial in resource-constrained computing devices. We propose a novel histogram-based technique to segregate photovoltaic solar cell sensor response suitable for TRNG and PUF respectively. The proposed prototype archives approximately 34\% improvement in TRNG output. The proposed prototype achieves an average of 92.13\% reliability and 50.91\% uniformity performance in PUF response. The proposed sensor-based hardware security primitives do not require additional interfacing hardware. Therefore, they can be ported as a software update on existing photoresistor and photovoltaic sensor-based devices. Furthermore, the sensor-based design approach can identify physically tempered and faulty sensor nodes during authentication as their response bit differs. The third contribution is towards the development of a novel 2-phase sinusoidal clocking implementation, 2-SPGAL for existing Symmetric Pass Gate Adiabatic Logic (SPGAL). The proposed 2-SPGAL logic-based LWC cipher PRESENT shows an average of 49.34\% energy saving compared to baseline CMOS logic implementation. Furthermore, the 2-SPGAL prototype has an average of 22.76\% better energy saving compared to 2-EE-SPFAL (2-phase Energy-Efficient-Secure Positive Feedback Adiabatic Logic). The proposed 2-SPGAL was tested for energy-efficiency performance for the frequency range of 50 kHz to 250 kHz, used in healthcare gadgets and biomedical instruments. The proposed 2-SPGAL based design saves 16.78\% transistor count compared to 2-EE-SPFAL counterpart. The final contribution is to explore Clocked CMOS Adiabatic Logic (CCAL) to design a cryptographic circuit. Previously proposed 2-SPGAL and 2-EE-SPFAL uses two complementary pairs of the transistor evaluation network, thus resulting in a higher transistor count compared to the CMOS counterpart. The CCAL structure is very similar to CMOS and unlike 2-SPGAL and 2-EE-SPFAL, it does not require discharge circuitry to improve security performance. The case-study implementation LWC cipher PRESENT S-Box using CCAL results into 45.74\% and 34.88\% transistor count saving compared to 2-EE-SPFAL and 2-SPGAL counterpart. Furthermore, the case-study implementation using CCAL shows more than 95\% energy saving compared to CMOS logic at frequency range 50 kHz to 125 kHz, and approximately 60\% energy saving at frequency 250 kHz. The case study also shows 32.67\% and 11.21\% more energy saving compared to 2-EE-SPFAL and 2-SPGAL respectively at frequency 250 kHz. We also show that 200 fF of tank capacitor in the clock generator circuit results in optimum energy and security performance in CCAL

    A Survey on Lightweight Entity Authentication with Strong PUFs

    Get PDF
    Physically unclonable functions (PUFs) exploit the unavoidable manufacturing variations of an integrated circuit (IC). Their input-output behavior serves as a unique IC \u27fingerprint\u27. Therefore, they have been envisioned as an IC authentication mechanism, in particular the subclass of so-called strong PUFs. The protocol proposals are typically accompanied with two PUF promises: lightweight and an increased resistance against physical attacks. In this work, we review nineteen proposals in chronological order: from the original strong PUF proposal (2001) to the more complicated noise bifurcation and system of PUFs proposals (2014). The assessment is aided by a unied notation and a transparent framework of PUF protocol requirements

    A Survey on Modality Characteristics, Performance Evaluation Metrics, and Security for Traditional and Wearable Biometric Systems

    Get PDF
    Biometric research is directed increasingly towards Wearable Biometric Systems (WBS) for user authentication and identification. However, prior to engaging in WBS research, how their operational dynamics and design considerations differ from those of Traditional Biometric Systems (TBS) must be understood. While the current literature is cognizant of those differences, there is no effective work that summarizes the factors where TBS and WBS differ, namely, their modality characteristics, performance, security and privacy. To bridge the gap, this paper accordingly reviews and compares the key characteristics of modalities, contrasts the metrics used to evaluate system performance, and highlights the divergence in critical vulnerabilities, attacks and defenses for TBS and WBS. It further discusses how these factors affect the design considerations for WBS, the open challenges and future directions of research in these areas. In doing so, the paper provides a big-picture overview of the important avenues of challenges and potential solutions that researchers entering the field should be aware of. Hence, this survey aims to be a starting point for researchers in comprehending the fundamental differences between TBS and WBS before understanding the core challenges associated with WBS and its design

    Reliable and secure low energy sensed spectrum communication for time critical cloud computing applications

    Get PDF
    Reliability and security of data transmission and access are of paramount importance to enhance the dependability of time critical remote monitoring systems (e.g. tele-monitoring patients, surveillance of smart grid components). Potential failures for data transmissions include wireless channel unavailability and delays due to the interruptions. Reliable data transmission demands seamless channel availability with minimum delays in spite of interruptions (e.g. fading, denial-of-service attacks). Secure data transmissions require sensed data to be transmitted over unreliable wireless channels with sucient security using suitable encryption techniques. The transmitted data are stored in secure cloud repositories. Potential failures for data access include unsuccessful user authentications due to mis-management of digital identities and insucient permissions to authorize situation specic data access requests. Reliable and secure data access requires robust user authentication and context-dependent authorization to fulll situation specic data utility needs in cloud repositories. The work herein seeks to enhance the dependability of time critical remote monitoring applications, by reducing these failure conditions which may degrade the reliability and security of data transmission or access. As a result of an extensive literature survey, in order to achieve the above said security and reliability, the following areas have been selected for further investigations. The enhancement of opportunistic transmissions in cognitive radio networks to provide greater channel availability as opposed to xed spectrum allocations in conventional wireless networks. Delay sensitive channel access methods to ensure seamless connectivity in spite of multiple interruptions in cognitive radio networks. Energy ecient encryption and route selection mechanisms to enhance both secure and reliable data transmissions. Trustworthy digital identity management in cloud platforms which can facilitate ecient user authentication to ensure reliable access to the sensed remote monitoring data. Context-aware authorizations to reliably handle the exible situation specic data access requests. Main contributions of this thesis include a novel trust metric to select non-malicious cooperative spectrum sensing users to reliably detect vacant channels, a reliable delaysensitive cognitive radio spectrum hand-o management method for seamless connectivity and an energy-aware physical unclonable function based encryption key size selection method for secure data transmission. Furthermore, a trust based identity provider selection method for user authentications and a reliable context-aware situation specic authorization method are developed for more reliable and secure date access in cloud repositories. In conclusion, these contributions can holistically contribute to mitigate the above mentioned failure conditions to achieve the intended dependability of the timecritical remote monitoring applications
    corecore