619 research outputs found

    Musical notes classification with Neuromorphic Auditory System using FPGA and a Convolutional Spiking Network

    Get PDF
    In this paper, we explore the capabilities of a sound classification system that combines both a novel FPGA cochlear model implementation and a bio-inspired technique based on a trained convolutional spiking network. The neuromorphic auditory system that is used in this work produces a form of representation that is analogous to the spike outputs of the biological cochlea. The auditory system has been developed using a set of spike-based processing building blocks in the frequency domain. They form a set of band pass filters in the spike-domain that splits the audio information in 128 frequency channels, 64 for each of two audio sources. Address Event Representation (AER) is used to communicate the auditory system with the convolutional spiking network. A layer of convolutional spiking network is developed and trained on a computer with the ability to detect two kinds of sound: artificial pure tones in the presence of white noise and electronic musical notes. After the training process, the presented system is able to distinguish the different sounds in real-time, even in the presence of white noise.Ministerio de Economía y Competitividad TEC2012-37868-C04-0

    Objects that Sound

    Full text link
    In this paper our objectives are, first, networks that can embed audio and visual inputs into a common space that is suitable for cross-modal retrieval; and second, a network that can localize the object that sounds in an image, given the audio signal. We achieve both these objectives by training from unlabelled video using only audio-visual correspondence (AVC) as the objective function. This is a form of cross-modal self-supervision from video. To this end, we design new network architectures that can be trained for cross-modal retrieval and localizing the sound source in an image, by using the AVC task. We make the following contributions: (i) show that audio and visual embeddings can be learnt that enable both within-mode (e.g. audio-to-audio) and between-mode retrieval; (ii) explore various architectures for the AVC task, including those for the visual stream that ingest a single image, or multiple images, or a single image and multi-frame optical flow; (iii) show that the semantic object that sounds within an image can be localized (using only the sound, no motion or flow information); and (iv) give a cautionary tale on how to avoid undesirable shortcuts in the data preparation.Comment: Appears in: European Conference on Computer Vision (ECCV) 201

    Multimodal music information processing and retrieval: survey and future challenges

    Full text link
    Towards improving the performance in various music information processing tasks, recent studies exploit different modalities able to capture diverse aspects of music. Such modalities include audio recordings, symbolic music scores, mid-level representations, motion, and gestural data, video recordings, editorial or cultural tags, lyrics and album cover arts. This paper critically reviews the various approaches adopted in Music Information Processing and Retrieval and highlights how multimodal algorithms can help Music Computing applications. First, we categorize the related literature based on the application they address. Subsequently, we analyze existing information fusion approaches, and we conclude with the set of challenges that Music Information Retrieval and Sound and Music Computing research communities should focus in the next years

    Speech Mode Classification using the Fusion of CNNs and LSTM Networks

    Get PDF
    Speech mode classification is an area that has not been as widely explored in the field of sound classification as others such as environmental sounds, music genre, and speaker identification. But what is speech mode? While mode is defined as the way or the manner in which something occurs or is expressed or done, speech mode is defined as the style in which the speech is delivered by a person. There are some reports on speech mode classification using conventional methods, such as whispering and talking using a normal phonetic sound. However, to the best of our knowledge, deep learning-based methods have not been reported in the open literature for the aforementioned classification scenario. Specifically, in this work we assess the performance of image-based classification algorithms on this challenging speech mode classification problem, including the usage of pre-trained deep neural networks, namely AlexNet, ResNet18 and SqueezeNet. Thus, we compare the classification efficiency of a set of deep learning-based classifiers, while we also assess the impact of different 2D image representations (spectrograms, mel-spectrograms, and their image-based fusion) on classification accuracy. These representations are used as input to the networks after being generated from the original audio signals. Next, we compare the accuracy of the DL-based classifies to a set of machine learning (ML) ones that use as their inputs Mel-Frequency Cepstral Coefficients (MFCCs) features. Then, after determining the most efficient sampling rate for our classification problem (i.e. 32kHz), we study the performance of our proposed method of combining CNN with LSTM (Long Short-Term Memory) networks. For this purpose, we use the features extracted from the deep networks of the previous step. We conclude our study by evaluating the role of sampling rates on classification accuracy by generating two sets of 2D image representations – one with 32kHz and the other with 16kHz sampling. Experimental results show that after cross validation the accuracy of DL-based approaches is 15% higher than ML ones, with SqueezeNet yielding an accuracy of more than 91% at 32kHz, whether we use transfer learning, feature-level fusion or score-level fusion (92.5%). Our proposed method using LSTMs further increased that accuracy by more than 3%, resulting in an average accuracy of 95.7%

    Modelling Instrumental Gestures and Techniques: A Case Study of Piano Pedalling

    Get PDF
    PhD ThesisIn this thesis we propose a bottom-up approach for modelling instrumental gestures and techniques, using piano pedalling as a case study. Pedalling gestures play a vital role in expressive piano performance. They can be categorised into di erent pedalling techniques. We propose several methods for the indirect acquisition of sustain-pedal techniques using audio signal analyses, complemented by the direct measurement of gestures with sensors. A novel measurement system is rst developed to synchronously collect pedalling gestures and piano sound. Recognition of pedalling techniques starts by using the gesture data. This yields high accuracy and facilitates the construction of a ground truth dataset for evaluating the audio-based pedalling detection algorithms. Studies in the audio domain rely on the knowledge of piano acoustics and physics. New audio features are designed through the analysis of isolated notes with di erent pedal e ects. The features associated with a measure of sympathetic resonance are used together with a machine learning classi er to detect the presence of legato-pedal onset in the recordings from a speci c piano. To generalise the detection, deep learning methods are proposed and investigated. Deep Neural Networks are trained using a large synthesised dataset obtained through a physical-modelling synthesiser for feature learning. Trained models serve as feature extractors for frame-wise sustain-pedal detection from acoustic piano recordings in a proposed transfer learning framework. Overall, this thesis demonstrates that recognising sustain-pedal techniques is possible to a high degree of accuracy using sensors and also from audio recordings alone. As the rst study that undertakes pedalling technique detection in real-world piano performance, it complements piano transcription methods. Moreover, the underlying relations between pedalling gestures, piano acoustics and audio features are identi ed. The varying e ectiveness of the presented features and models can also be explained by di erences in pedal use between composers and musical eras
    corecore