18 research outputs found

    Scalable audio processing across heterogeneous distributed resources: An investigation into distributed audio processing for Music Information Retrieval

    Get PDF
    Audio analysis algorithms and frameworks for Music Information Retrieval (MIR) are expanding rapidly, providing new ways to discover non-trivial information from audio sources, beyond that which can be ascertained from unreliable metadata such as ID3 tags. MIR is a broad field and many aspects of the algorithms and analysis components that are used are more accurate given a larger dataset for analysis, and often require extensive computational resources. This thesis investigates if, through the use of modern distributed computing techniques, it is possible to design an MIR system that is scalable as the number of participants increases, which adheres to copyright laws and restrictions, whilst at the same time enabling access to a global database of music for MIR applications and research. A scalable platform for MIR analysis would be of benefit to the MIR and scientific community as a whole. A distributed MIR platform that encompasses the creation of MIR algorithms and workflows, their distribution, results collection and analysis, is presented in this thesis. The framework, called DART - Distributed Audio Retrieval using Triana - is designed to facilitate the submission of MIR algorithms and computational tasks against either remotely held music and audio content, or audio provided and distributed by the MIR researcher. Initially a detailed distributed DART architecture is presented, along with simulations to evaluate the validity and scalability of the architecture. The idea of a parameter sweep experiment to find the optimal parameters of the Sub-Harmonic Summation (SHS) algorithm is presented, in order to test the platform and use it to perform useful and real-world experiments that contribute new knowledge to the field. DART is tested on various pre-existing distributed computing platforms and the feasibility of creating a scalable infrastructure for workflow distribution is investigated throughout the thesis, along with the different workflow distribution platforms that could be integrated into the system. The DART parameter sweep experiments begin on a small scale, working up towards the goal of running experiments on thousands of nodes, in order to truly evaluate the scalability of the DART system. The result of this research is a functional and scalable distributed MIR research platform that is capable of performing real world MIR analysis, as demonstrated by the successful completion of several large scale SHS parameter sweep experiments across a variety of different input data - using various distribution methods - and through finding the optimal parameters of the implemented SHS algorithm. DART is shown to be highly adaptable both in terms of the distributed MIR analysis algorithm, as well as the distributio

    Treatise on Hearing: The Temporal Auditory Imaging Theory Inspired by Optics and Communication

    Full text link
    A new theory of mammalian hearing is presented, which accounts for the auditory image in the midbrain (inferior colliculus) of objects in the acoustical environment of the listener. It is shown that the ear is a temporal imaging system that comprises three transformations of the envelope functions: cochlear group-delay dispersion, cochlear time lensing, and neural group-delay dispersion. These elements are analogous to the optical transformations in vision of diffraction between the object and the eye, spatial lensing by the lens, and second diffraction between the lens and the retina. Unlike the eye, it is established that the human auditory system is naturally defocused, so that coherent stimuli do not react to the defocus, whereas completely incoherent stimuli are impacted by it and may be blurred by design. It is argued that the auditory system can use this differential focusing to enhance or degrade the images of real-world acoustical objects that are partially coherent. The theory is founded on coherence and temporal imaging theories that were adopted from optics. In addition to the imaging transformations, the corresponding inverse-domain modulation transfer functions are derived and interpreted with consideration to the nonuniform neural sampling operation of the auditory nerve. These ideas are used to rigorously initiate the concepts of sharpness and blur in auditory imaging, auditory aberrations, and auditory depth of field. In parallel, ideas from communication theory are used to show that the organ of Corti functions as a multichannel phase-locked loop (PLL) that constitutes the point of entry for auditory phase locking and hence conserves the signal coherence. It provides an anchor for a dual coherent and noncoherent auditory detection in the auditory brain that culminates in auditory accommodation. Implications on hearing impairments are discussed as well.Comment: 603 pages, 131 figures, 13 tables, 1570 reference

    The perceptual flow of phonetic feature processing

    Get PDF

    Cross-spectral synergy and consonant identification (A)

    Get PDF

    Proceedings of the 19th Sound and Music Computing Conference

    Get PDF
    Proceedings of the 19th Sound and Music Computing Conference - June 5-12, 2022 - Saint-Étienne (France). https://smc22.grame.f
    corecore