90,396 research outputs found

    The Audio Degradation Toolbox and its Application to Robustness Evaluation

    Get PDF
    We introduce the Audio Degradation Toolbox (ADT) for the controlled degradation of audio signals, and propose its usage as a means of evaluating and comparing the robustness of audio processing algorithms. Music recordings encountered in practical applications are subject to varied, sometimes unpredictable degradation. For example, audio is degraded by low-quality microphones, noisy recording environments, MP3 compression, dynamic compression in broadcasting or vinyl decay. In spite of this, no standard software for the degradation of audio exists, and music processing methods are usually evaluated against clean data. The ADT fills this gap by providing Matlab scripts that emulate a wide range of degradation types. We describe 14 degradation units, and how they can be chained to create more complex, `real-world' degradations. The ADT also provides functionality to adjust existing ground-truth, correcting for temporal distortions introduced by degradation. Using four different music informatics tasks, we show that performance strongly depends on the combination of method and degradation applied. We demonstrate that specific degradations can reduce or even reverse the performance difference between two competing methods. ADT source code, sounds, impulse responses and definitions are freely available for download

    Drum Transcription via Classification of Bar-level Rhythmic Patterns

    Get PDF
    acceptedMatthias Mauch is supported by a Royal Academy of Engineering Research Fellowshi

    Singing Voice Synthesis Using Differentiable LPC and Glottal-Flow-Inspired Wavetables

    Get PDF
    This paper introduces GlOttal-flow LPC Filter (GOLF), a novel method for singing voice synthesis (SVS) that exploits the physical characteristics of the human voice using differentiable digital signal processing. GOLF employs a glottal model as the harmonic source and IIR filters to simulate the vocal tract, resulting in an interpretable and efficient approach. We show it is competitive with state-of-the-art singing voice vocoders, requiring fewer synthesis parameters and less memory to train, and runs an order of magnitude faster for inference. Additionally, we demonstrate that GOLF can model the phase components of the human voice, which has immense potential for rendering and analysing singing voices in a differentiable manner. Our results highlight the effectiveness of incorporating the physical properties of the human voice mechanism into SVS and underscore the advantages of signal-processing-based approaches, which offer greater interpretability and efficiency in synthesis

    An energy-based generative sequence model for testing sensory theories of Western harmony

    Get PDF
    The relationship between sensory consonance and Western harmony is an important topic in music theory and psychology. We introduce new methods for analysing this relationship, and apply them to large corpora representing three prominent genres of Western music: classical, popular, and jazz music. These methods centre on a generative sequence model with an exponential-family energy-based form that predicts chord sequences from continuous features. We use this model to investigate one aspect of instantaneous consonance (harmonicity) and two aspects of sequential consonance (spectral distance and voice-leading distance). Applied to our three musical genres, the results generally support the relationship between sensory consonance and harmony, but lead us to question the high importance attributed to spectral distance in the psychological literature. We anticipate that our methods will provide a useful platform for future work linking music psychology to music theory

    Filosax: A Dataset of Annotated Jazz Saxophone Recordings

    Get PDF
    The Filosax dataset is a large collection of specially commissioned recordings of jazz saxophonists playing with commercially available backing tracks. Five participants each recorded themselves playing the melody, interpreting a transcribed solo and improvising on 48 tracks, giving a total of around 24 hours of audio data. The solos are annotated both as individual note events with physical timing, and as sheet music with a metrical interpretation of the timing. In this paper, we outline the criteria used for choosing and sourcing the repertoire, the recording process and the semi-automatic transcription pipeline. We demonstrate the use of the dataset to analyse musical phenomena such as swing timing and dynamics of typical musical figures, as well as for training a source activity detection system and predicting expressive characteristics. Other potential applications include the modelling of jazz improvisation, performer identification, automatic music transcription, source separation and music generation

    Affective Music Information Retrieval

    Full text link
    Much of the appeal of music lies in its power to convey emotions/moods and to evoke them in listeners. In consequence, the past decade witnessed a growing interest in modeling emotions from musical signals in the music information retrieval (MIR) community. In this article, we present a novel generative approach to music emotion modeling, with a specific focus on the valence-arousal (VA) dimension model of emotion. The presented generative model, called \emph{acoustic emotion Gaussians} (AEG), better accounts for the subjectivity of emotion perception by the use of probability distributions. Specifically, it learns from the emotion annotations of multiple subjects a Gaussian mixture model in the VA space with prior constraints on the corresponding acoustic features of the training music pieces. Such a computational framework is technically sound, capable of learning in an online fashion, and thus applicable to a variety of applications, including user-independent (general) and user-dependent (personalized) emotion recognition and emotion-based music retrieval. We report evaluations of the aforementioned applications of AEG on a larger-scale emotion-annotated corpora, AMG1608, to demonstrate the effectiveness of AEG and to showcase how evaluations are conducted for research on emotion-based MIR. Directions of future work are also discussed.Comment: 40 pages, 18 figures, 5 tables, author versio

    An efficient temporally-constrained probabilistic model for multiple-instrument music transcription

    Get PDF
    In this paper, an efficient, general-purpose model for multiple instrument polyphonic music transcription is proposed. The model is based on probabilistic latent component analysis and supports the use of sound state spectral templates, which represent the temporal evolution of each note (e.g. attack, sustain, decay). As input, a variable-Q transform (VQT) time-frequency representation is used. Computational efficiency is achieved by supporting the use of pre-extracted and pre-shifted sound state templates. Two variants are presented: without temporal constraints and with hidden Markov model-based constraints controlling the appearance of sound states. Experiments are performed on benchmark transcription datasets: MAPS, TRIOS, MIREX multiF0, and Bach10; results on multi-pitch detection and instrument assignment show that the proposed models outperform the state-of-the-art for multiple-instrument transcription and is more than 20 times faster compared to a previous sound state-based model. We finally show that a VQT representation can lead to improved multi-pitch detection performance compared with constant-Q representations
    • …
    corecore