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ABSTRACT

The relationship between sensory consonance and Western
harmony is an important topic in music theory and psy-
chology. We introduce new methods for analysing this re-
lationship, and apply them to large corpora representing
three prominent genres of Western music: classical, popu-
lar, and jazz music. These methods centre on a generative
sequence model with an exponential-family energy-based
form that predicts chord sequences from continuous fea-
tures. We use this model to investigate one aspect of in-
stantaneous consonance (harmonicity) and two aspects of
sequential consonance (spectral distance and voice-leading
distance). Applied to our three musical genres, the results
generally support the relationship between sensory conso-
nance and harmony, but lead us to question the high impor-
tance attributed to spectral distance in the psychological
literature. We anticipate that our methods will provide a
useful platform for future work linking music psychology
to music theory.

1. INTRODUCTION

Music theorists and psychologists have long sought to un-
derstand how Western harmony may be shaped by natural
phenomena universal to all humans [13, 27, 36]. Key to
this work is the notion of sensory consonance, describing
a sound’s natural pleasantness [32, 35, 38], and its inverse
sensory dissonance, describing natural unpleasantness.

Sensory consonance has both instantaneous and se-
quential aspects. Instantaneous consonance is the conso-
nance of an individual sound, whereas sequential conso-
nance is a property of a progression between sounds.

Instantaneous sensory consonance primarily derives
from roughness and harmonicity. Roughness is an un-
pleasant sensation caused by interactions between spectral
components in the inner ear [8,41], whereas harmonicity 1

is a pleasant percept elicited by a sound’s resemblance to
the harmonic series [4, 20].

1 Related concepts include tonalness [27], toneness [15], fusion [14,
36], complex sonorousness [29], and multiplicity [29].
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Sequential sensory consonance is primarily determined
by spectral distance and voice-leading distance. Spec-
tral distance 2 describes how much a sound’s acoustic
spectrum perceptually differs from neighbouring spectra
[22–24, 27, 29]. Voice-leading distance 3 describes how
far notes in one chord have to move to produce the next
chord [2, 39, 40]. Consonance is associated with low spec-
tral and voice-leading distance.

Many Western harmonic conventions can be rational-
ized as attempts to increase pleasantness by maximizing
sensory consonance. The major triad maximizes con-
sonance by minimizing roughness and maximizing har-
monicity; the circle of fifths maximizes consonance by
minimizing spectral distance; tritone substitutions are con-
sonant through voice-leading efficiency [39].

This idea – that Western harmony seeks to maximize
sensory consonance – has a long history in music the-
ory [31]. Its empirical support is surprisingly limited, how-
ever. The best evidence comes from research linking sen-
sory consonance maximization to rules from music the-
ory [15, 27, 39], but this work is constrained by the sub-
jectivity and limited scope of music-theoretic textbooks.

A better approach is to bypass textbooks and analyse
musical scores directly. Usefully, large datasets of digi-
tised musical scores are now available, as are many com-
putational models of consonance. However, statistically
linking them is non-trivial. One could calculate distribu-
tions of consonance features, but this would give only lim-
ited causal insight into how these distributions arise. Better
insight might be achieved by regressing transition proba-
bilities against consonance features, but this approach is
statistically problematic because of variance heterogeneity
induced by the inevitable sparsity of the transition tables.

This paper presents a new statistical model developed
for tackling this problem. The model is generative and
feature-based, defining a probability distribution over sym-
bolic sequences based on features derived from these se-
quences. Unlike previous feature-based sequence models,
it is specialized for continuous features, making it well-
suited to consonance modelling. Moreover, the model pa-
rameters are easily interpretable and have quantifiable un-

2 Spectral distance is also known by its antonym spectral similarity
[23]. Pitch commonality [29] is a similar concept. Psychological models
of harmony and tonality in the auditory short-term memory (ASTM) tra-
dition typically rely on some kind of spectral distance measure [1, 7, 17].

3 Voice-leading distance is termed horizontal motion in [2]. Parncutt’s
notion of pitch distance [28, 29] is also conceptually similar to voice-
leading distance.
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certainty, enabling error-controlled statistical inference.
We use this new model to test sensory theories of har-

mony as follows. We fit the model to corpora of chord
sequences from classical, popular, and jazz music, using
psychological models of sensory consonance as features.
We then compute feature importance metrics to quantify
how different aspects of consonance constrain harmonic
movement. This work constitutes the first corpus analysis
comprehensively linking sensory consonance to harmonic
practice.

2. METHODS

2.1 Representations

2.1.1 Input

Chord progressions are represented as sequences of pitch-
class sets. Exact chord repetitions are removed, but
changes of chord inversion are represented as repeated
pitch-class sets.

2.1.2 Pitch-Class Spectra

Some of our features use pitch-class spectra as defined
in [22, 24]. A pitch-class spectrum is a continuous func-
tion that describes perceptual weight as a function of pitch
class (pc). Perceptual weight is the strength of percep-
tual evidence for a given pitch class being present. Pitch
classes (pc) take values in the interval [0, 12) and relate to
frequency (f , Hz scale) as follows:

pc =

[
9 + 12 log2

(
f

440

)]
mod 12. (1)

Pitch-class sets are transformed to pitch-class spectra
by expanding each pitch class into its implied harmonics.
Pitch classes are modelled as harmonic complex tones with
12 harmonics, after [22]. The jth harmonic in a pitch class
has level j−ρ, where ρ is the roll-off parameter (ρ > 0).
Partials are represented by Gaussians with mass equal to
partial level, mean equal to partial pitch class, and standard
deviation σ. Perceptual weights combine additively.

Formally, W (pc, X) defines a pitch-class spectrum, re-
turning the perceptual weight at pitch-class pc for an input
pitch-class set X = {x1, x2, . . . , xm}:

W (pc, X) =

m∑
i=1

T (pc, xi). (2)

Here i indexes the pitch classes, and T (pc, x) is the contri-
bution of a harmonic complex tone with fundamental pitch
class x to an observation at pitch class pc:

T (pc, x) =

12∑
j=1

g
(
pc, j

−ρ, h(x, j)
)
. (3)

Now j indexes the harmonics, g(pc, l, px) is the contribu-
tion from a harmonic with level l and pitch-class px to an
observation at pitch-class pc,

g(pc, l, px) =
l

σ
√
2π

exp

(
−1

2

(
d(pc, px)

σ

)2
)
, (4)

d(px, py) is the distance between two pitch classes px and
py ,

d(px, py) = min (|px − py|, 12− |px − py|) , (5)

and h(x, j) is the pitch class of the jth partial of a harmonic
complex tone with fundamental pitch class x:

h(x, j) = (x+ 12 log2 j) mod 12. (6)

ρ and σ are set to 0.75 and 0.0683 after [22].

2.2 Features

2.2.1 Spectral Distance

Spectral distance is operationalised using the psychologi-
cal model of [22, 24]. The spectral distance between two
pitch-class sets X,Y is defined as 1 minus the continuous
cosine similarity between the two pitch-class spectra:

D(X,Y ) = 1−
∫ 12

0
W (z,X)W (z, Y ) dz√∫ 12

0
W (z,X)2 dz

√∫ 12

0
W (z, Y )2 dz

(7)
withW as defined in Equation 2. The measure takes values
in the interval [0, 1], where 0 indicates maximal similarity
and 1 indicates maximal divergence.

2.2.2 Harmonicity

Our harmonicity model is inspired by the template-
matching algorithms of [21] and [29]. The model simulates
how listeners search the auditory spectrum for occurrences
of harmonic spectra. These inferred harmonic spectra are
termed virtual pitches. High harmonicity corresponds to a
strong virtual pitch percept.

Our model differs from previous models in two ways.
First, it uses a pitch-class representation, not a pitch repre-
sentation. This makes it voicing-invariant and hence more
suitable for modelling pitch-class sets. Second, it takes
into account the strength of all virtual pitches in the spec-
trum, not just the strongest virtual pitch.

The model works as follows. The virtual pitch-class
spectrumQ defines the spectral similarity of the pitch-class
set X to a harmonic complex tone with pitch class pc:

Q(pc, X) = D(pc, X) (8)

with D as defined in Equation 7. Normalising Q to unit
mass produces Q′:

Q′(pc, X) =
Q(pc, X)∫ 12

0
Q(y,X) dy

. (9)

Previous models compute harmonicity by taking the peak
of this spectrum. In our experience this works for small



chords but not for larger chords, where several virtual
pitches need to be accounted for. We therefore instead
compute a spectral peakiness measure. Several such mea-
sures are possible, but here we use Kullback-Leibler diver-
gence from a uniform distribution. H(X), the harmonicity
of a pitch-class set X , can therefore be written as follows:

H(X) =

∫ 12

0

Q′(y,X) log2 (12Q
′(y,X)) dy. (10)

Harmonicity has a large negative correlation with the
number of notes in a chord. Some correlation is expected,
but not to this degree: the harmonicity model considers
a tritone (the least consonant two-note chord) to be more
consonant than a major triad (the most consonant three-
note chord). We therefore separate the two phenomena by
adding a ‘chord size’ feature, corresponding to the number
of notes in a given chord, and rescaling harmonicity to zero
mean and unit variance across all chords with a given chord
size.

2.2.3 Roughness

Roughness has traditionally been considered to be an im-
portant contributor to sensory consonance, though some
recent research disputes its importance [20]. We originally
planned to include roughness in our model, but then dis-
covered that the phenomenon is highly sensitive to chord
voicing. Since the voicing of a pitch-class set is unde-
fined, its roughness is therefore unpredictable. Roughness
is therefore not modelled in the present study.

2.2.4 Voice-Leading Distance

A voice leading connects the individual notes in two pitch-
class sets to form simultaneous melodies [39]. Pitch-class
sets of different sizes can be connected by allowing pitch
classes to participate in multiple melodies. Voice-leading
distance is an aggregate measure of the resulting melodic
distance. We operationalise voice-leading distance using
[39]’s geometric model.

Consider two pitch-class sets X = {x1, x2, . . . , xm}
and Y = {y1, y2, . . . , yn}. A voice-leading between X
and Y can be writtenA→ B whereA = (a1, a2, . . . , aN ),
B = (b1, b2, . . . , bN ), and the following holds: if x ∈ X
then x ∈ A, if y ∈ Y then y ∈ B, if a ∈ A then a ∈ X , if
b ∈ B then b ∈ Y , and n ≤ N .

The distance of the voice leading A → B is denoted
V (A,B) and uses the taxicab norm:

V (A,B) =

N∑
i=1

d(ai, bi) (11)

with d(ai, bi) as defined in Equation 5.
The voice-leading distance between pitch-class sets

X,Y is then defined as the smallest value of V (A,B) for
all legal A,B. This minimal distance can be efficiently
computed using the algorithm described in [39].

2.2.5 Summary

This section defined three sensory consonance features.
These included one instantaneous measure (harmonicity)
and two sequential measures (spectral distance, voice-
leading distance). Harmonicity correlated strongly with
chord size, which could have confounded our analyses.
We therefore controlled for chord size by normalising har-
monicity for each chord size and including chord size as a
feature.

2.3 Statistical Model

2.3.1 Overview

The statistical model is generative, defining a probability
distribution over chord sequences (e.g. [12, 25, 33]). It
is feature-based, using features of the chord and its con-
text to predict chord probabilities (e.g. [12]). It is energy-
based, defining scalar energies for each feature configu-
ration which are then transformed and normalised to pro-
duce the final probability distribution (e.g. [3, 10, 30]). It
is exponential-family in that the energy function is a linear
function of the feature vector (e.g. [10, 30]). Informally,
the model might be said to generalise linear regression to
symbolic sequences.

2.3.2 Form

Let A denote the set of all possible chords, and let en0 de-
note a chord sequence of length n, where e0 is always a
generic start symbol. Let ei ∈ A denote the ith chord and
eji the subsequence (ei, ei+1, . . . , ej). Let w be the weight
vector that parametrises the model.

The probability of a chord sequence is factorised into a
chain of conditional chord probabilities.

P (en0 |w) =

n∏
i=1

P
(
ei | ei−10 ,w

)
(12)

These are given energy-based expressions:

P
(
ei | ei−10 ,w

)
=

exp (−E(ei−10 , ei,w))

Z(ei−10 ,w)
(13)

where E is the energy function and Z is the partition func-
tion. Z normalises the probability distribution to unit mass:

Z(ei−10 ,w) =
∑
x∈A

exp (−E(ei−10 , x,w)). (14)

High E corresponds to low probability. E is defined as
a sum of feature functions, fj , weighted by −w:

E(ei−10 , x,w) = −
m∑
j=1

fj(e
i−1
0 :: x)wj (15)

where wj is the jth component of w, m is the dimension-
ality of w, equalling the number of feature functions fj ,
and ei−10 :: x is the concatenation of ei−10 and x ∈ A.

Feature functions measure a property of the last ele-
ment of a sequence. Our feature functions are chord size,



harmonicity, spectral distance, and voice-leading distance.
Chord size and harmonicity are context-independent,
whereas spectral and voice-leading distance relate the last
chord to the penultimate chord. When the penultimate
chord is undefined, mean values are imputed for spectral
and voice-leading distance, with the mean computed over
all possible chord transitions.

2.3.3 Estimation

The model is parametrised by the weight vector w. This
weight vector is optimised using maximum-likelihood es-
timation on a corpus of sequences, as follows.

Let enk

0,k denote the kth sequence from a corpus of size
N , where nk is the sequence’s length. The negative log-
likelihood of the weight vector w with respect to the corpus
is then

C(w) = −
N∑
k=1

nk∑
i=1

logP (ei,k|ei−10,k ,w). (16)

After some algebra, the gradient can be written

dC

dw
=

N∑
k=1

nk∑
i=1

Z ′(ei−10,k ,w)

Z(ei−10,k ,w)
− f(ei0,k) (17)

where

Z ′(ei−10,k ,w) =
∑
x∈A

f(ei−10,k :: x) exp (−E(ei−10,k , x,w))

(18)
and f is the vector of feature functions. This expression can
be plugged into a generic optimiser to find a weight vector
minimising the negative log-likelihood. The present work
used the BFGS optimiser [37].

2.3.4 Feature Importance

This section introduces three complementary feature im-
portance measures. These are weight, explained entropy,
and unique explained entropy.

Weight describes a feature’s relationship to chord prob-
ability. The weight for a feature function fj is the parame-
ter wj , corresponding to (minus) the change in the energy
function E in response to a one-unit change in the fea-
ture function fj (Equation 15). Weight is a signed feature
importance measure: the sign dictates whether the model
prefers high (positive weight) or low (negative weight) fea-
ture values, and the magnitude dictates the strength of pref-
erence. To aid weight comparability between features, fea-
ture functions are scaled to unit variance over the set of all
possible chord transitions.

Dividing the cost function (Equation 16) by the num-
ber of chords in the corpus (

∑N
k=1 nk) gives an estimate

of cross entropy in units of nats. Cross entropy measures
chord-wise unpredictability with respect to a given model.
From it we define two further measures: explained entropy
and unique explained entropy.

Explained entropy for a feature fj is computed by com-
paring cross entropy estimates for two models: a model

trained using feature fj and a null model trained with no
features. Explained entropy is the difference between the
two cross entropies. Higher values indicate that the feature
explains a lot of structure in the corpus.

Unique explained entropy for a feature fj is the amount
that cross entropy changes when feature fj is removed
from the full feature set. It measures the unique explana-
tory power of a feature while controlling for other features.

2.3.5 Related Work

The literature contains several alternative approaches for
feature-based modelling of chord sequences. One is the
multiple viewpoint method [11, 12]. However, this method
is specialised for discrete features, not the continuous fea-
tures required for consonance modelling. A second alter-
native is the maximum-entropy approach of [10, 30]. This
approach has some formal similarities with the present
work, but its binary feature functions are incompatible with
our continuous features. A third possibility is the feature-
based dynamic networks of [33]; however, these networks
would need substantial modification to represent the kind
of feature dependencies required here.

2.4 Corpora

Our corpora represent three musical genres: classical mu-
sic (1,022 movements/pieces), popular music (739 pieces),
and jazz music (1,186 pieces). The classical corpus was
compiled from KernScores [34], including ensemble music
and keyboard music from several several major composers
of common-practice tonal music (Bach, Haydn, Mozart,
Beethoven, Chopin). Chord labels were obtained using the
algorithm of [26] with an expanded chord dictionary, and
with segment boundaries co-located with metrical beat lo-
cations as estimated from time signatures. Chord inver-
sions were identified as the lowest-pitch chord tone in the
harmonic segment being analysed. The popular and jazz
corpora corresponded to publicly available datasets: the
McGill Billboard corpus [6] and the iRB corpus [5].

2.5 Efficiency

Computation can be reduced by identifying repeated terms
in the cost and cost gradient (Equations 16, 17). These
repeated terms only need to be evaluated once. Our feature
functions never look back further than the previous chord,
and they are invariant to chord transposition; this means
that repeated terms occur whenever a chord pair is repeated
at some transposition. Collapsing over these repetitions
reduces computation by a factor of 20–100 for our corpora.

2.6 Numeric Integration

The features related to pitch-class spectra all use integra-
tion. These integrals are numerically approximated using
the rectangle rule with 1,200 subintervals, after [24].

2.7 Software

The statistical model was implemented in R and C++;
source code is available from the authors on request.



3. RESULTS

3.1 Corpus level

Figure 1 plots feature importances for the three consonance
measures: harmonicity (normalised by chord size), spec-
tral distance, and voice-leading distance. Analyses are split
by musical corpus, and confidence intervals are calculated
using nonparametric bootstrapping [9].

3.1.1 Importance by Feature

All the consonance features contribute to harmonic struc-
ture in some way. The order of feature importance is
fairly consistent between genres and importance measures.
Broadly speaking, voice-leading distance is most impor-
tant, followed by harmonicity, then spectral distance.

3.1.2 Importance by Corpus

Harmonicity is particularly important for popular music,
less so for classical, and least for jazz. Spectral distance is
most important for classical music, less so for popular, and
unimportant for jazz.

The relative importance of voice-leading distance de-
pends on the measure used: it scores highly on explained
entropy, but less on weight and unique explained entropy.
This may be because voice-leading distance and chord
size capture some common information: moving from a
small chord to a large chord typically involves a large
voice-leading distance. If we wish to assess the unique
effect of voice-leading distance, we can look at weight
and unique explained entropy: these measures tell us that
voice-leading distance is most important for jazz music,
less for classical music, and least for popular music.

3.1.3 Signs of Weights

The sign of a feature weight determines whether the model
prefers positive or negative values of the feature. The ob-
served feature signs are all consistent with theory. Har-
monicity has a positive weight for all genres, indicating
that harmonicity is universally promoted. Spectral distance
and voice-leading distance both have negative weights, in-
dicating preference for lower values of these features.

3.2 Composition Level

We also explored the application of these techniques to in-
dividual compositions (Figure 2). While the composition-
level analyses reflect the same trends as the corpus-level
analyses (Figure 1), they also reveal substantial overlap be-
tween the corpora. We assessed the extent of this overlap
by training a generic machine-learning classifier to predict
genre from the complete set of feature importance mea-
sures. Our classifier was a random forest model trained us-
ing the randomForest package in R [18], with 2,000 trees
and four variables sampled at each split. Performance was
assessed using 10-fold cross-validation repeated and aver-
aged over 10 runs, resulting in a classification accuracy of
86% and a kappa statistic of .79. This indicates that genre
differences in sensory consonance are moderately salient,
even at the composition level.

4. CONCLUSION

This paper introduces new methods for testing relation-
ships between sensory consonance and Western harmony.
The methods centre on a new statistical model that predicts
symbolic sequences using continuous features. We demon-
strate these methods through application to three corpora
representing classical, popular, and jazz music.

The results strongly support theoretical relationships
between sensory consonance and harmonic structure. The
three aspects of sensory consonance tested – harmonic-
ity, spectral distance, and voice-leading distance – all pre-
dicted harmonic movement. Not all aspects were equally
important, however. Spectral distance performed poorly,
particularly in jazz. This is interesting given the high im-
portance attributed to spectral distance in recent psycho-
logical literature [1, 7, 22]. Harmonicity performed well in
popular music, but less so in classical and jazz. In contrast,
voice-leading distance performed consistently well.

The corpus analyses deserve further development. It
would be worth probing the true universality of sensory
consonance by exploring a broader range of styles and us-
ing more refined stylistic categories, possibly at the level of
the composer. The validity of the classical analyses could
also be improved through more principled sampling [19]
and manual chord-labelling [16].

The three feature importance measures provide useful
complementary perspectives, but it is unnecessary to plot
each one every time. In future we recommend inspect-
ing the weights to check whether a feature is promoted or
avoided, but then plotting just unique explained entropy.
Unique explained entropy is preferable to weight because
its units are well-defined, and preferable to explained en-
tropy because it controls for other features, thereby provid-
ing a better handle on causality.

We focused on interpreting the statistical model through
feature importance measures, but an alternative strategy
would be to use the model to generate chord sequences for
subjective evaluation. This route lacks the objectivity of
feature-importance analysis, but it would give a uniquely
intuitive perspective on what the model has learned.

The modelling techniques could be developed further.
An important limitation of the current model is the linear-
ity of the energy function, which restricts it to monotonic
feature effects. A polynomial energy function would ad-
dress this problem. It would also be interesting to develop
the psychological features further, perhaps adding echoic
memory to the spectral distance measure [17], and intro-
ducing an octave-generalised roughness measure.

Despite these limitations, we believe that the current
results have important implications for our understanding
of Western tonal harmony. In particular, the results im-
ply that voice-leading efficiency is a better candidate for
a harmonic universal than spectral similarity. This result
is important for music psychology, where voice-leading
efficiency is relatively underemphasised compared to har-
monicity and spectral similarity (though see [2, 27, 39]).
Future psychological work may wish to re-examine the
role of voice-leading efficiency in harmony perception.
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Figure 1. Measures of feature importance as a function of musical corpus. These measures are calculated from statistical
models trained on the corpus level. Error bars represent 99% confidence intervals estimated by nonparametric bootstrap-
ping [9]. Signs of feature weights are reversed for spectral distance and voice-leading distance, so that positive weights
correspond to consonance maximisation.
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Figure 2. Distributions of feature importance measures as calculated for individual compositions within the three corpora.
Distributions are represented by Epanechnikov kernel density functions. Signs of feature weights are reversed for spectral
distance and voice-leading distance, so that positive weights correspond to consonance maximisation.
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[41] Václav Vencovský. Roughness prediction based on a
model of cochlear hydrodynamics. Archives of Acous-
tics, 41(2):189–201, 2016.


