74,242 research outputs found

    Cerebellar Learning in an Opponent Motor Controller for Adaptive Load Compensation and Synergy Formation

    Full text link
    This paper shows how a minimal neural network model of the cerebellum may be embedded within a sensory-neuro-muscular control system that mimics known anatomy and physiology. With this embedding, cerebellar learning promotes load compensation while also allowing both coactivation and reciprocal inhibition of sets of antagonist muscles. In particular, we show how synaptic long term depression guided by feedback from muscle stretch receptors can lead to trans-cerebellar gain changes that are load-compensating. It is argued that the same processes help to adaptively discover multi-joint synergies. Simulations of rapid single joint rotations under load illustrates design feasibility and stability.National Science Foundation (IRI-90-24877, IRI-87-16960); Office of Naval Research (N00014-92-J-1309); Consejo Nacional de Ciencia y Technología (63462); Air Force Office of Scientific Research (F49620-92-J-0499); Defense Advanced Research Projects Agency (AFOSR 90-0083, ONR N00014-92-J-4015

    Altered resting state neuromotor connectivity in men with chronic prostatitis/chronic pelvic pain syndrome: A MAPP: Research Network Neuroimaging Study.

    Get PDF
    Brain network activity associated with altered motor control in individuals with chronic pain is not well understood. Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS) is a debilitating condition in which previous studies have revealed altered resting pelvic floor muscle activity in men with CP/CPPS compared to healthy controls. We hypothesized that the brain networks controlling pelvic floor muscles would also show altered resting state function in men with CP/CPPS. Here we describe the results of the first test of this hypothesis focusing on the motor cortical regions, termed pelvic-motor, that can directly activate pelvic floor muscles. A group of men with CP/CPPS (N = 28), as well as group of age-matched healthy male controls (N = 27), had resting state functional magnetic resonance imaging scans as part of the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network study. Brain maps of the functional connectivity of pelvic-motor were compared between groups. A significant group difference was observed in the functional connectivity between pelvic-motor and the right posterior insula. The effect size of this group difference was among the largest effect sizes in functional connectivity between all pairs of 165 anatomically-defined subregions of the brain. Interestingly, many of the atlas region pairs with large effect sizes also involved other subregions of the insular cortices. We conclude that functional connectivity between motor cortex and the posterior insula may be among the most important markers of altered brain function in men with CP/CPPS, and may represent changes in the integration of viscerosensory and motor processing

    A node-wise analysis of the uterine muscle networks for pregnancy monitoring

    Full text link
    The recent past years have seen a noticeable increase of interest in the correlation analysis of electrohysterographic (EHG) signals in the perspective of improving the pregnancy monitoring. Here we propose a new approach based on the functional connectivity between multichannel (4x4 matrix) EHG signals recorded from the women abdomen. The proposed pipeline includes i) the computation of the statistical couplings between the multichannel EHG signals, ii) the characterization of the connectivity matrices, computed by using the imaginary part of the coherence, based on the graph-theory analysis and iii) the use of these measures for pregnancy monitoring. The method was evaluated on a dataset of EHGs, in order to track the correlation between EHGs collected by each electrode of the matrix (called node-wise analysis) and follow their evolution along weeks before labor. Results showed that the strength of each node significantly increases from pregnancy to labor. Electrodes located on the median vertical axis of the uterus seemed to be the more discriminant. We speculate that the network-based analysis can be a very promising tool to improve pregnancy monitoring.Comment: 4 pages, 3 figures, accepted in the IEEE EMBC conferanc

    Behavioural simulation of biological neuron systems using VHDL and VHDL-AMS

    No full text
    The investigation of neuron structures is an incredibly difficult and complex task that yields relatively low rewards in terms of information from biological forms (either animals or tissue). The structures and connectivity of even the simplest invertebrates are almost impossible to establish with standard laboratory techniques, and even when this is possible it is generally time consuming, complex and expensive. Recent work has shown how a simplified behavioural approach to modelling neurons can allow “virtual” experiments to be carried out that map the behaviour of a simulated structure onto a hypothetical biological one, with correlation of behaviour rather than underlying connectivity. The problems with such approaches are numerous. The first is the difficulty of simulating realistic aggregates efficiently, the second is making sense of the results and finally, it would be helpful to have an implementation that could be synthesised to hardware for acceleration. In this paper we present a VHDL implementation of Neuron models that allow large aggregates to be simulated. The models are demonstrated using a system level VHDL and VHDL-AMS model of the C. Elegans locomotory system

    Equilibria and Dynamics of a Neural Network Model for Opponent Muscle Control

    Full text link
    One of the advantages of biological skeleto-motor systems is the opponent muscle design, which in principle makes it possible to achieve facile independent control of joint angle and joint stiffness. Prior analysis of equilibrium states of a biologically-based neural network for opponent muscle control, the FLETE model, revealed that such independent control requires specialized interneuronal circuitry to efficiently coordinate the opponent force generators. In this chapter, we refine the FLETE circuit variables specification and update the equilibrium analysis. We also incorporate additional neuronal circuitry that ensures efficient opponent force generation and velocity regulation during movement.National Science Foundation (IRI-90-24877); Consejo Nacional de Ciencia y Tecnologia, Méxic

    Correlation-based model of artificially induced plasticity in motor cortex by a bidirectional brain-computer interface

    Full text link
    Experiments show that spike-triggered stimulation performed with Bidirectional Brain-Computer-Interfaces (BBCI) can artificially strengthen connections between separate neural sites in motor cortex (MC). What are the neuronal mechanisms responsible for these changes and how does targeted stimulation by a BBCI shape population-level synaptic connectivity? The present work describes a recurrent neural network model with probabilistic spiking mechanisms and plastic synapses capable of capturing both neural and synaptic activity statistics relevant to BBCI conditioning protocols. When spikes from a neuron recorded at one MC site trigger stimuli at a second target site after a fixed delay, the connections between sites are strengthened for spike-stimulus delays consistent with experimentally derived spike time dependent plasticity (STDP) rules. However, the relationship between STDP mechanisms at the level of networks, and their modification with neural implants remains poorly understood. Using our model, we successfully reproduces key experimental results and use analytical derivations, along with novel experimental data. We then derive optimal operational regimes for BBCIs, and formulate predictions concerning the efficacy of spike-triggered stimulation in different regimes of cortical activity.Comment: 35 pages, 9 figure

    Information decomposition of multichannel EMG to map functional interactions in the distributed motor system

    Get PDF
    The central nervous system needs to coordinate multiple muscles during postural control. Functional coordination is established through the neural circuitry that interconnects different muscles. Here we used multivariate information decomposition of multichannel EMG acquired from 14 healthy participants during postural tasks to investigate the neural interactions between muscles. A set of information measures were estimated from an instantaneous linear regression model and a time-lagged VAR model fitted to the EMG envelopes of 36 muscles. We used network analysis to quantify the structure of functional interactions between muscles and compared them across experimental conditions. Conditional mutual information and transfer entropy revealed sparse networks dominated by local connections between muscles. We observed significant changes in muscle networks across postural tasks localized to the muscles involved in performing those tasks. Information decomposition revealed distinct patterns in task-related changes: unimanual and bimanual pointing were associated with reduced transfer to the pectoralis major muscles, but an increase in total information compared to no pointing, while postural instability resulted in increased information, information transfer and information storage in the abductor longus muscles compared to normal stability. These findings show robust patterns of directed interactions between muscles that are task-dependent and can be assessed from surface EMG recorded during static postural tasks. We discuss directed muscle networks in terms of the neural circuitry involved in generating muscle activity and suggest that task-related effects may reflect gain modulations of spinal reflex pathways

    Cortical Models for Movement Control

    Full text link
    Defense Advanced Research Projects Agency and Office of Naval Research (N0014-95-l-0409)

    A Pipeline for Volume Electron Microscopy of the Caenorhabditis elegans Nervous System.

    Get PDF
    The "connectome," a comprehensive wiring diagram of synaptic connectivity, is achieved through volume electron microscopy (vEM) analysis of an entire nervous system and all associated non-neuronal tissues. White et al. (1986) pioneered the fully manual reconstruction of a connectome using Caenorhabditis elegans. Recent advances in vEM allow mapping new C. elegans connectomes with increased throughput, and reduced subjectivity. Current vEM studies aim to not only fill the remaining gaps in the original connectome, but also address fundamental questions including how the connectome changes during development, the nature of individuality, sexual dimorphism, and how genetic and environmental factors regulate connectivity. Here we describe our current vEM pipeline and projected improvements for the study of the C. elegans nervous system and beyond
    corecore