259 research outputs found

    A Survey of Self-supervised Learning from Multiple Perspectives: Algorithms, Applications and Future Trends

    Full text link
    Deep supervised learning algorithms generally require large numbers of labeled examples to achieve satisfactory performance. However, collecting and labeling too many examples can be costly and time-consuming. As a subset of unsupervised learning, self-supervised learning (SSL) aims to learn useful features from unlabeled examples without any human-annotated labels. SSL has recently attracted much attention and many related algorithms have been developed. However, there are few comprehensive studies that explain the connections and evolution of different SSL variants. In this paper, we provide a review of various SSL methods from the perspectives of algorithms, applications, three main trends, and open questions. First, the motivations of most SSL algorithms are introduced in detail, and their commonalities and differences are compared. Second, typical applications of SSL in domains such as image processing and computer vision (CV), as well as natural language processing (NLP), are discussed. Finally, the three main trends of SSL and the open research questions are discussed. A collection of useful materials is available at https://github.com/guijiejie/SSL

    To Compress or Not to Compress -- Self-Supervised Learning and Information Theory: A Review

    Full text link
    Deep neural networks have demonstrated remarkable performance in supervised learning tasks but require large amounts of labeled data. Self-supervised learning offers an alternative paradigm, enabling the model to learn from data without explicit labels. Information theory has been instrumental in understanding and optimizing deep neural networks. Specifically, the information bottleneck principle has been applied to optimize the trade-off between compression and relevant information preservation in supervised settings. However, the optimal information objective in self-supervised learning remains unclear. In this paper, we review various approaches to self-supervised learning from an information-theoretic standpoint and present a unified framework that formalizes the \textit{self-supervised information-theoretic learning problem}. We integrate existing research into a coherent framework, examine recent self-supervised methods, and identify research opportunities and challenges. Moreover, we discuss empirical measurement of information-theoretic quantities and their estimators. This paper offers a comprehensive review of the intersection between information theory, self-supervised learning, and deep neural networks

    Learning Dense Object Descriptors from Multiple Views for Low-shot Category Generalization

    Full text link
    A hallmark of the deep learning era for computer vision is the successful use of large-scale labeled datasets to train feature representations for tasks ranging from object recognition and semantic segmentation to optical flow estimation and novel view synthesis of 3D scenes. In this work, we aim to learn dense discriminative object representations for low-shot category recognition without requiring any category labels. To this end, we propose Deep Object Patch Encodings (DOPE), which can be trained from multiple views of object instances without any category or semantic object part labels. To train DOPE, we assume access to sparse depths, foreground masks and known cameras, to obtain pixel-level correspondences between views of an object, and use this to formulate a self-supervised learning task to learn discriminative object patches. We find that DOPE can directly be used for low-shot classification of novel categories using local-part matching, and is competitive with and outperforms supervised and self-supervised learning baselines. Code and data available at https://github.com/rehg-lab/dope_selfsup.Comment: Accepted at NeurIPS 2022. Code and data available at https://github.com/rehg-lab/dope_selfsu

    Recent Advances in Transfer Learning for Cross-Dataset Visual Recognition: A Problem-Oriented Perspective

    Get PDF
    This paper takes a problem-oriented perspective and presents a comprehensive review of transfer learning methods, both shallow and deep, for cross-dataset visual recognition. Specifically, it categorises the cross-dataset recognition into seventeen problems based on a set of carefully chosen data and label attributes. Such a problem-oriented taxonomy has allowed us to examine how different transfer learning approaches tackle each problem and how well each problem has been researched to date. The comprehensive problem-oriented review of the advances in transfer learning with respect to the problem has not only revealed the challenges in transfer learning for visual recognition, but also the problems (e.g. eight of the seventeen problems) that have been scarcely studied. This survey not only presents an up-to-date technical review for researchers, but also a systematic approach and a reference for a machine learning practitioner to categorise a real problem and to look up for a possible solution accordingly
    • …
    corecore