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ABSTRACT

LEARNING FROM LIMITED LABELED DATA
FOR VISUAL RECOGNITION

SEPTEMBER 2021

Jong-Chyi Su

B.Sc., NATIONAL TAIWAN UNIVERSITY

M.Sc., UNIVERSITY OF CALIFORNIA SAN DIEGO

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Subhransu Maji

Recent advances in computer vision are in part due to the widespread use of deep

neural networks. However, training deep networks require enormous amounts of labeled

data which can be a bottleneck. In this thesis, we propose several approaches to mitigate

this in the context of modern deep networks and computer vision tasks.

While transfer learning is an effective strategy for natural image tasks where large la-

beled datasets such as ImageNet are available, it is less effective for distant domains such as

medical images and 3D shapes. Chapter 2 focuses on transfer learning from natural image

representations to other modalities. In many cases, cross-modal data can be generated using

computer graphics techniques. By forcing the agreement of predictions across modalities,

we show that the models are more robust to image degradation, such as lower resolution,

grayscale, or line drawings instead of color images in high-resolution. Similarly, we show

that 3D shape classifiers learned from multi-view images can be transferred to the models

of voxel or point cloud representations.
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Another line of work has focused on techniques for few-shot learning. In particu-

lar, meta-learning approaches explicitly aim to generalize representations by emphasizing

transferability to novel tasks. In Chapter 3, we analyze how to improve these techniques by

exploiting unlabeled data from related tasks. We show that combining unsupervised objec-

tives with meta-learning objectives can boost the performance of novel tasks. However, we

find that small amounts of domain-specific data can be more beneficial than large amounts

of generic data.

While transfer learning, unsupervised learning, and few-shot learning have been studied

in isolation, in practice, one often finds that transfer learning from large labeled datasets

is more effective than others. This is partly due to a lack of evaluation on benchmarks

that contains challenges such as class imbalance and domain mismatch. In Chapter 4, we

explore the role of expert models in the context of semi-supervised learning on a realistic

benchmark. Unlike existing semi-supervised benchmarks, our dataset is designed to expose

some of the challenges encountered in a realistic setting, such as the fine-grained similarity

between classes, significant class imbalance, and domain mismatch between the labeled

and unlabeled data. We show that current semi-supervised methods are negatively affected

by out-of-class data, and their performance pales compared to a transfer learning baseline.

Last, we leverage the coarse labels from a large collection of images to improve semi-

supervised learning. In Chapter 5, we show that incorporating hierarchical labels in the

taxonomy improves state-of-the-art semi-supervised methods.
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CHAPTER 1

INTRODUCTION

Image recognition has shown significant progress in the last decade, given the develop-

ment of deep neural networks. However, training neural network models usually require

a large amount of labeled data which are not always available. For example, in applica-

tions such as fine-grained classification of animal species, annotating images needs domain

experts, and its associated cost is expensive. In this thesis, we explore different research

directions to make models more robust given limited labeled data.

One common practice is transfer learning, where the model is first pre-trained on a

large generic labeled dataset such as ImageNet [92], then fine-tuned on the target task with

limited labels. This has been a standard technique for computer vision tasks [43, 129, 89].

Another line of work is few-shot learning, which focuses on improving the robustness using

labeled data only. Recent works on few-shot learning include generating more training

data and using meta-learning methods to make models adapt to target tasks quickly. The

third type of method leverages unlabeled data and uses unsupervised learning to learn the

representation. This type of method is also called self-supervised learning in recent works.

The next category is semi-supervised learning, which considers both few labeled data and

unlabeled data at the same time. Last, one can utilize different modalities of the data (e.g.,

3D shape and rendered images) by using multi-modal learning methods.

In the rest of this chapter, we will provide an overview and related works on each of

the five research directions. We first discuss transfer learning and its limitations on deep

neural networks in Chapter 1.1. We then introduce the task of few-shot transfer learning and

state-of-the-art methods, including meta-learning in Chapter 1.2. In Chapter 1.3, we discuss
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recent works on unsupervised representation learning (or self-supervised learning) and how

to combine it with transfer learning. In Chapter 1.4, we provide the background and recent

works of semi-supervised learning. We then discuss cross-modal transfer learning and the

technique of knowledge distillation in Chapter 1.5. Last, we summarize the contributions

of the thesis in Chapter 1.6.

1.1 Transfer learning

In the past years, the progress on computer vision has been driven by various bench-

marks such as ImageNet [36, 134]. In particular, a transfer learning paradigm, where the

model is first pre-trained on ImageNet then fine-tuned on target task, has shown state-

of-the-art results on various downstream tasks, including object detection [56, 68], image

segmentation [102], and image categorization [43, 100]. Using pre-trained models largely

reduces the convergence time at the fine-tuning stage compared to training from a ran-

domly initialized model (training from scratch) [67]. However, transfer learning by fine-

tuning is not always optimal [89]. It is also sensitive to hyper-parameters when the target

dataset is small. Furthermore, even though recent papers showed that model pre-trained

on larger scale datasets [157] can further improve the performance [87], how to select the

best pre-trained model for the target task is also crucial. For example, one can choose the

model based on the similarity of datasets or use the task embedding to select the pre-trained

model [35, 187, 1].

In this work, we focus on the target task of fine-grained classification. In real-world

applications such as recognizing species, class distributions are usually long-tailed. The

“head” classes have many images while the “tail” classes only have few images. This is

particularly hard for transfer learning as stated above. Current state-of-the-art methods

often use class-balancing loss functions [34], normalize the weights of the classifier [81],

or incorporate few-shot learning methods [101] to improve the accuracy of the tail classes.

In the next section, we describe the details of few-shot learning.
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1.2 Few-shot learning

Few-shot learning aims to learn representations with few labeled images that gener-

alize well [45, 108]. Recently, a few-shot transfer learning setting has been proposed to

simulate and evaluate few-shot learning [171]. Given a set of base classes with abundant

images, the model is trained to better transfer to the novel classes where only a few images

are available. To this end, several meta-learning approaches propose to evaluate repre-

sentations by sampling many few-shot tasks within the domain of a dataset. These include

optimization-based meta-learners, such as model-agnostic meta-learner (MAML) [46], gra-

dient unrolling [128], closed-form solvers [12], and convex learners [99]. The second class

of methods relies on distance-based classifiers such as matching networks [171] and proto-

typical networks (ProtoNet) [146], or modeling higher-order relationships in data using a

graph network [50]. Another class of methods [53, 124, 125] model the mapping between

training data and classifier weights using a feed-forward network.

While the literature is rapidly growing, a recent study by Chen et al. [27] has shown that

the differences between meta-learners are diminished when deeper networks are used. They

show that fine-tuning based transfer learning is a strong baseline for few-shot learning and

the performance of ProtoNet [146] matches or surpasses several recently proposed meta-

learners. In later works, transfer learning can be combined with transductive learning [39]

or unsupervised-learning [54, 156, 30] to achieve better performances. We will introduce

unsupervised learning and its related works in the next section.

Yet another line of work for few-shot learning is to generate more data by data augmen-

tation. While image-based data augmentation such as scaling and color jittering are widely

used for training deep networks, recent approaches employ complex strategies to general-

ize representations to novel classes in the few-shot setting. Data hallucination [65, 177]

generate novel examples based on estimated relationships between clusters of image fea-

tures. Antoniou et al. [2] use generative adversarial networks (GANs) to generate face

data, while Schwartz et al. [138] generate examples based on a model of intra-class vari-
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ance learned from pairs of images within a class. These techniques are complementary to

the aforementioned meta-learning based methods.

1.3 Self-supervised learning

While unsupervised learning is a general term for machine learning algorithms, one

of the goals of unsupervised learning is to find underlying structures from the data itself.

After training is done, the model can generate feature representations that are useful for

downstream tasks. This type of unsupervised representation learning is often called self-

supervised learning (Self-SL) in recent works. In the rest of the thesis, we will use the term

“self-supervised learning”. Self-SL is particularly useful in computer vision since images

are easy to get but human annotations are expensive to acquire.

One class of Self-SL methods remove part of the visual data and task the network with

predicting what has been removed from the rest in a discriminative manner [96, 119, 165,

192, 193]. Some other self-supervised tasks include predicting rotation [54], relative patch

location [40], clusters [20, 21], and the number of objects [114], etc. On top of them,

combining different tasks can be beneficial [41].

Recent works have shown that methods based on contrastive learning objectives [64]

outperform the above-mentioned methods based on pretext tasks [44, 73, 7, 181, 162, 66,

25, 116, 59]. These contrastive objectives [64] are often expressed in terms of noise-

contrastive estimation (NCE) [62] or maximizing mutual information [116, 73] between

different augmentations of an image. However, the focus of most prior works on self-

supervised learning is to supplant traditional supervised representation learning with unsu-

pervised learning on large unlabeled datasets for downstream tasks.

Comparing to pre-text tasks in which the self-supervised representations lag behind the

fully-supervised ones [57, 88], contrastive-based methods are catching up with the super-

vised performances [66, 25, 59]. Self-supervised learning can also be used to improve

semi-supervised learning [188, 26], which we will describe next.
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1.4 Semi-supervised learning

Semi-supervised learning (Semi-SL) considers the setting where we have a large set of

unlabeled data in which a subset is labeled. It is a more realistic setting since we often

have a limited budget for annotation while the data itself is cheaper to acquire. Methods on

semi-supervised learning usually rely on the smoothness assumption: if two data points are

close in high-density regions, they should have the same label [23]. One way to leverage

the smoothness assumption is entropy minimization [58]. By encouraging the conditional

probability of the class predictions to be either 0 or 1 in high-density regions, the class

boundaries will be more accurate in low-density regions.

Another type of method focuses on the transductive setting: instead of learning a dis-

criminative model on the data, it directly estimates the labels. This can be naturally applied

to semi-supervised learning via the smoothness assumption [78]. Graph-based methods

can also be used to propagate labels on unlabeled data [8].

The third type of method is self-training, which has been proposed decades ago [106,

139]. The idea is to first train a model on labeled data, then use the model to automati-

cally generate labels for the unlabeled data. “Pseudo-labeling” [97] includes only confi-

dent predictions, i.e., those greater than a threshold for training. The pseudo-labels can

be added iteratively to induce a “curriculum” [22, 9, 63]. Other self-training methods in-

volve re-training a “student model” from a “teacher model” using its prediction computed

in different ways [183, 184, 195, 26]. For example, adding noise and using a larger student

model [183, 195], selecting k-most confident pseudo-labels [184], or using a distillation

loss which softens the predictions [183, 26].

Consistency-based methods learn by encouraging the consistency of the model’s pre-

dictions on the unlabeled data. This is related to an old idea of “co-training” [14, 126]:

the different “views” of the same object (e.g. image and its caption) should be classi-

fied with the same label. In recent papers, the views are often referred to as different

augmentations of the image [6, 127, 95, 136], including adversarial versions [109]. Al-
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ternatively, consistency can be enforced across time, e.g., using moving average of the

predictions (temporal ensembling [95]), using the moving average of model parameters

(mean teacher [160]), or using a stochastic averaging of model parameters [3]. A num-

ber of methods for data augmentation have been proposed which has generally improved

both supervised and semi-supervised learning. These include the variety of image augmen-

tations proposed in RandAugment [33], the CutOut scheme [38], linear combinations of

images used in MixUp [189], and even augmentations in feature space [93]. These have

been incorporated in methods such as MixMatch [11], ReMixMatch [10], FixMatch [148],

UDA [182], and ICT [170] in different ways for consistency-based learning. While consis-

tency via data-augmentation is effective when a model is trained from scratch, it is unclear

if this is effective when using a pre-trained model, as invariance to these transformations

may have been acquired during supervised pre-training.

Lastly, one can use self-supervised learning objectives to improve semi-supervised

learning. These include incorporating pre-text tasks such as predicting image rotations [54],

the order of patches (jigsaw puzzle task) [113] during semi-supervised learning [188, 156,

130]. Alternatively, self-supervised learning can be used as an initialization before training

with labels. Based on the recent success of contrastive-based methods [66, 161, 25], it has

shown promising results on semi-supervised ImageNet benchmark [26].

Despite the vast literature on semi-supervised learning, current benchmarks on semi-

supervised image classification such as CIFAR, SVHN, and ImageNet are not realistic.

Those semi-supervised datasets are collected from curated datasets without class imbalance

and contains no images from novel classes. Furthermore, the benchmarks do not compare

with transfer learning, which has shown to be a strong baseline on semi-supervised learn-

ing [115]. To this end, we collected two semi-supervised fine-grained classification datasets

obtained by sampling classes from the Aves and Fungi taxonomy. In Chapter 4, we inves-

tigate different state-of-the-art semi-supervised methods, including the recent ones using

self-supervised learning. We also investigate the effect of transfer learning and the effect
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of out-of-distribution unlabeled data. In Chapter 5, we further improve semi-supervised

learning by incorporating coarse labels of the hierarchical taxonomy.

1.5 Cross-modal learning and knowledge distillation

Data can have different modalities, e.g. videos have images and audio across time.

Methods on cross-modal learning often learn a joint embedding space for different modal-

ities [47, 111, 147]. In some applications, one modality can have richer information than

others, e.g. a color image and a silhouette image. In other cases, different modalities can

contain complementary information, e.g. color and depth images. One way to transfer

the information between different representations is to use knowledge distillation [72]. It

improves the performance of a simple classifier g, e.g. a shallow neural network, by imi-

tating the outputs of a complex classifier f , e.g. a deep neural network. Distillation was

first proposed for “model compression” [18] where simple classifiers such as linear mod-

els were trained to match the predictions of a decision-tree ensemble, leading to compact

models. Distillation has been applied to transferring rich representations across modalities.

For example, a model trained with images can be used to guide the learning of a model

for depth images [61], or to a model for sound waves [4]. Distillation has also been used

on cross-modal self-supervised learning [161], on few-shot learning [163], and on semi-

supervised learning [26]. In this work, we show that distillation is useful for cross-modal

learning (Chapter 2), and as self-training in semi-supervised learning (Chapter 4).

1.6 Contributions

In this thesis, we present our BMVC paper on cross-modal distillation [153] and ECCV

workshop paper on 3D shape recognition using distillation [152] in Chapter 2. Chap-

ter 3 includes our paper on boosting semi-supervised learning using self-supervised learn-

ing [156]. To investigate the effectiveness of existing semi-supervised methods, we first

collected Semi-Aves [154] and Semi-iNat [155] datasets. We use these two datasets for the
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Kaggle challenges in FGVC7 and FGVC8 workshops, which were held in CVPR 2020 and

2021. Chapter 4 presents the benchmark and analysis using our collected datasets, which is

included in our CVPR paper [151]. Last, we use the coarse taxonomy labels collected in the

Semi-iNat dataset to further improve semi-supervised learning, as presented in Chapter 5.
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CHAPTER 2

CROSS-MODAL LEARNING USING KNOWLEDGE
DISTILLATION

Transfer learning has been a standard technique for computer vision tasks. A common

strategy is to initialize the weights from an ImageNet pre-trained model, then fine-tune the

model on the target task through back-propagation. However, transfer learning is sensitive

to hyper-parameters such as regularization when the target dataset is small [89]. In this

chapter, we aim to improve transfer learning by cross-modal learning when having small

target datasets.

In Chapter 2.1 to Chapter 2.3, we aim to build image recognition models that are robust

to various forms of degradation, such as loss in resolution, lower signal-to-noise ratio,

poor alignment, etc. When the target dataset consists of degraded images, simply fine-

tuning does not work well. For example, the performance of existing models for fine-

grained recognition drops rapidly when the resolution of the input image is reduced (see

Table 2.1). While it is natural to expect a drop in accuracy since it may be impossible to

infer certain visual properties from the low-quality data, we are interested in models whose

performance degrades more gracefully as the signal degrades. Such systems will have

a significant impact in a wide range of applications including those where poor quality

data poses critical challenges such as surveillance, recognition of satellite imagery, face

recognition for biometrics, etc. To this end, we propose a technique called Cross Quality

Distillation (CQD) which utilizes the fact that in many scenarios abundant high-quality

labeled data is available from which it is easy to automatically generate low-quality labeled

data. However, instead of directly training a model on the low-quality data, which does not

generalize well, we use the model trained on the high-quality data to guide the learning of a
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model on the low-quality by forcing agreement between their predictions on each example

(Figure 2.1). This guidance helps the second model generalize better on the low-quality

data even though it does not have a direct access to the high-quality data at training or

testing time.

In Chapter 2.4 to Chapter 2.5, we use knowledge distillation to improve 3D shape clas-

sification. A 3D shape can be represented as multi-view images, voxels, or point clouds.

We first analyze the performance of using one type of modalities. We then apply distilla-

tion across modalities to see if one model can guide the learning of other models. Last, we

improve the performance by combining representations learned from different modalities.

2.1 Knowledge Distillation

f(x)

z

x

y

A

B g(z)
L1

L2

Figure 2.1: The CQD framework.

Assume that we have data in the form of

(xi, zi, yi), i = 1, 2, . . . , n where xi ∈ A is the

high-quality data, zi ∈ B is the corresponding

low-quality data, and yi ∈ Y is the target la-

bel. In practice only the high-quality data xi is

needed since zi can be generated from xi. The

idea of CQD is to first train a model f to predict

the labels on the high-quality data and train a

second model g on the low-quality data by forcing an agreement between their correspond-

ing predictions by minimizing the following objective (Fig. 2.1):

n∑
i=1

L1 (g(zi), yi) + λ

n∑
i=1

L2 (g(zi), f(xi)) +R(g). (2.1)

Here, L1 and L2 are loss functions, λ is a trade-off parameter, and R(g) is a regular-

ization term. The intuition for this objective is that by imitating the prediction of f on the

high-quality data g can learn to generalize better on the low-quality data.
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All our experiments are on multi-class classification datasets and we model both f and

g using multi-layer CNNs, pre-trained on ImageNet dataset, with a final softmax layer to

produce class probabilities p = σ(z), i.e., pk = ezk/
∑

j e
zj . We use the cross-entropy loss

L1(p,q) =
∑

i qi log pi, and the cross-entropy of the predictions smoothed by a temper-

ature parameter T for L2(p,q) = L1 (σ (log(p)/T ) , σ (log(q)/T )). When T = 1, this

reduces to the standard cross-entropy loss. We also found that squared-error between the

logits (z) worked similarly. More details can be found in the experiments section.

2.2 Experiments on Image Classification

We show experiments on training Convolutional Neural Network (CNN) models for

recognizing fine-grained categories of birds and cars in images of non-localized objects

using localized ones (Figure 2.2a), low-resolution images using high-resolution images

(Figure 2.2b), line drawings using color images (Figure 2.2c), and distorted images using

non-distorted images (Figure 2.2d). This is a challenging task even on high-quality images,

but the performance is often dramatically lower when applied to low-quality images. Our

experiments show that CQD leads to significant improvements over a model trained on

the low-quality data and other strong baselines for domain adaptation. The model works

across a variety of tasks and domains without any task-specific customization. We also

present preliminary experiments to address the case when the quality of the test data varies

across examples, e.g. differing resolutions, using mixture models that lead to further gains.

We also relate CQD to existing approaches in the literature, spanning areas of domain

adaptation, model compression [18, 72, 5], and learning with privileged information [168].

Our technique can be seen as a simple generalization of the model compression approach

pioneered by Bucilǎ et al. [18], and revived recently in the context of CNNs by Hinton

et al. [72] and Ba and Caruana [5]. In model compression, the goal is to learn a simple

classifier that can imitate a more complex classifier on the same input, whereas in CQD

the two functions operate on different inputs. However, the ideas are complementary and
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can be combined. For example, we can use a deeper CNN trained on high-quality images

to guide the learning of a shallower CNN on the low-quality images leading to even better

generalization. Finally, we present insights into why the method works by relating it to the

area of curriculum learning [9] and through visualizations of the learned models.

2.2.1 Experimental Setup

We begin by describing datasets, models, and training protocols used in our experi-

ments. Chapter 2.3 describes the results of various experiments on CQD. Chapter 2.3.1

describes experiments for simultaneous quality distillation and model compression. Fi-

nally, Chapter 2.3.2 visualizes the distilled models to provide an intuition of why and how

distillation works.

2.2.1.1 Datasets

We perform experiments on the CUB 200-2011 dataset [179] consisting of 11,788 im-

ages of 200 different bird species, and on the Stanford cars dataset [91] consisting of 16,185

images of 196 cars of different models and makes. Classification requires the ability to rec-

ognize fine-grained details which are impacted when the quality of the images is poor.

Using the provided images and bounding-box annotations in these datasets, we create sev-

eral cross-quality datasets which are described in detail in Chapter 2.3 and visualized in

Figure 2.2. We use the training and test splits provided in the datasets.

2.2.1.2 Models

In our experiments, both f and g are based on CNNs pre-trained on the ImageNet

dataset [36]. In particular we use vgg-m [24] and vgg-vd models [145] which obtain

competitive performance on the ImageNet dataset. While there are better performing mod-

els for these tasks, e.g. those using novel model architectures[100, 32, 142, 77], and using

additional annotations to train part and object detectors [15, 190, 191, 16], we perform ex-
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279, 10527 Cardinal_0078_17181

White_Pelican_0031_97064
Blue_Jay_0095_63505

Ruby_Throated_Hummingbir
d_0123_57745

(a) localized g non localized (b) high g low resolution (c) color g edges (d) regular g distorted

Figure 2.2: Examples of images from various cross-quality datasets used in our experi-
ments. Images are from the birds [179] and cars dataset [91]. In each panel, the top row
shows examples of the high-quality images and the bottom row shows examples of the cor-
responding low-quality images. These include (a) localized and non-localized images, (b)
high- and low-resolution images, (c) color and edge images, and (d) regular and distorted
images.

periments with simple models in the interest of a detailed analysis. However, we believe

that our method is general and can be applied to other recognition architectures as well.

2.2.1.3 Methods

Below we describe various methods used in our experiments:

1. Train on A: Starting from the ImageNet pre-trained model, we replace the 1000-

way classifier (last layer) with a k-way classifier initialized randomly and then fine-

tune the entire model with a small learning rate on domain A. This is a standard

way of transfer learning using deep models and has been successfully applied for

a number of vision tasks including object detection, scene classification, semantic

segmentation, texture recognition, and fine-grained classification [43, 129, 55, 31,

102, 110, 100].

2. Train on B: Here we fine-tune the ImageNet pre-trained model on domain B.

3. Train on A+ B: Here we fine-tune the model on domain A combined with domain

B. Data augmentation is commonly used while training CNNs to make them more

robust.
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4. Train on A, then train on B: This is a combination of A and B where the fine-

tuning on domain B is initialized from the model fine-tuned on domain A. This

“staged training” was recently proposed in [120] as a state-of-the-art technique for

low-resolution image recognition. However, this method can only be applied when

both f and g have the same structure. This is denoted by A,B in our experiments.

5. Cross quality distillation (CQD): Here we use a model f trained on domain A

(Method 1) to guide the learning of a second model g on domain B using CQD

(Equation 2.1). Like before, when f and g have an identical structure we can initialize

g from f instead of the ImageNet model with random weights for the last layer.

Optimization details There are two parameters, T and λ, in the CQD model. The op-

timal value we found on validation set is T = 10 for all experiments, and λ = 200 for the

CUB, λ = 50 for the CARS dataset. The optimization in Equation 2.1 was solved using

batch stochastic gradient descent, with learning rate starting from 0.0005 (0.0005 for

CUB, 0.001 for CARS) changing linearly to 0.00005 after 30 epochs. Other parameters

are as follows: momentum=0.9, weight decay=0.0005, batch size=128

(=32 when training vgg-vd). Instead of cross-entropy we also tried squared-distance

on the logits z as the loss function [5]. There was no significant difference between the

two and we used cross-entropy for all our experiments. Our implementation is based on

MatConvNet [169].

2.3 Results on Image Classification

We experiment with five different kinds of quality reduction to test the versatility of

the approach. For each case, we report per-image accuracy on the test set provided in the

dataset. Results using the vgg-m model for both function f and g are summarized in

Table 2.1 and are described in detail below. The main conclusions are summarized at the

end of this section.
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Description Method Test
Local. Resolution Edge Dist. Local. + Res.
CUB CUB CARS CUB CARS CUB CUB

Upper bound A A 67.0 67.0 59.3 67.0 59.3 67.0 67.0
No adaptation A B 57.4 39.4 7.6 1.9 4.2 49.7 24.9
Fine-tuning B B 60.8 61.0 41.6 29.2 45.5 58.4 46.2

Data augment. A+ B B 63.6 62.2 47.3 32.5 51.3 61.7 51.7
Staged training A,B B 62.4 62.3 48.4 30.4 50.1 60.9 50.4

Proposed CQD B 64.4 64.4 48.8 34.1 51.5 63.0 52.7

Table 2.1: Cross quality distillation results. Per-image accuracy on birds dataset
(CUB) [179] and Stanford cars dataset (CARS) [91] for various methods and quality losses.
All results are using f = g = vgg-m model. Training on A and testing on A is the upper
bound of the performance in each setting (top row). Training on A and testing on B (no
adaptation) often leads to a significant loss in performance. The proposed technique (CQD)
outperforms fine-tuning (B), data augmentation (A + B), and staged training (A,B) [120]
on all datasets.

Localized to Non-localized Distillation. To create the high-quality data, we use the

provided bounding boxes in the CUB dataset to crop the object in each image. In this

dataset, birds appear in various locations and scales and in clutter. Therefore, vgg-m

trained and evaluated on the localized data obtains 67.0% accuracy, but when applied the

non-localized data obtains only 57.4% accuracy (Table 2.1). When the model is trained on

the non-localized data the performance improves to 60.8%. Staged training A,B improves

the performance to 62.4%, but CQD improves further to 64.4%.

For this task, another baseline would be to train an object detector that first local-

izes the objects in images. For example, Krause et al. [90] report around 2.6% drop

in accuracy (67.9% → 65.3%) when an R-CNN based object detector is used to esti-

mate bounding-boxes of objects at test time instead of using true bounding-boxes (Ta-

ble 2 in [90], CNN+GT BBox+ft vs. R-CNN+ft). Remarkably, using CQD we observe

only 2.6% drop in performance (67.0% → 64.4%) without running any object detector.

Moreover, our method only requires a single CNN evaluation and hence is faster. In Chap-
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ter 2.3.2 we provide insights into why the distilled model performs better on non-localized

images.

High- to Low-Resolution Distillation. Here we evaluate how models perform on im-

ages of various resolutions. For the CUB dataset, we use the localized images resized

to 224 × 224 for the high-resolution images, downsample to 50 × 50, and upsample to

224 × 224 again for the low-resolution images. For the CARS dataset we do the same but

for the entire image (bounding boxes are not used).

The domain shift leads to a large loss in performance here. On CUB the performance

of the model trained on high-resolution data goes down from 67.0% to 39.4%, while the

performance loss on CARS is even more dramatic going from 59.3% to a mere 7.6%.

Man-made objects like cars contain high-frequency details such as brand logos, shapes of

headlights, etc., which are hard to distinguish in low-resolution images. A model trained

on the low-resolution images does much better, achieving 61.0% and 41.6% accuracy on

birds and cars respectively. Color cues in the low-resolution are much more useful for

distinguishing birds than cars which might explain the better performance on birds. Using

CQD the performance improves further to 64.4% and 48.8% on the low-resolution data.

On CARS the effect of both staged training and CQD is significant, leading to a more than

7% boost in performance.

Color to Edges Distillation. Recognizing line-drawings can be used for the retrieval of

images and 3D shapes using sketches and has several applications in search and retrieval.

As a proxy for line-drawings, we test the performance of various methods on edge images

obtained by running the structured edge detector [42] on the color images. In contrast to

low-resolution images, edge images contain no color information but preserve most of the

high-frequency details. This is reflected in the better performance of the models on CARS

than the CUB dataset (Table 2.1). Due to the larger domain shift, a model trained on color

images performs poorly on edge images, obtaining 1.9% and 4.2% accuracy on CUB and

CARS receptively.
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Using CQD the performance improves significantly from 45.5% to 51.5% on CARS.

On the CUB dataset, the performance also improves from 29.2% to 34.1%. The strong

improvements on recognizing line drawings using distillation and staged training suggest

that a better strategy to recognize line drawings of shapes used in various sketch-based

retrieval applications [149, 175] is to first fine-tune the model on realistically rendered 3D

models (e.g. with shading and texture) then distill the model to edge images.

Non-distorted to Distorted Distillation. Here the high-quality dataset is the localized

bird images. To distort an image as seen in Figure 2.2d, we use the thin plate spline trans-

formation with a uniform grid of 14×14 control points. Each control point is mapped from

a regular grid to a point randomly shifted by Gaussian distribution with zero mean and 4

pixels variance. Recognizing distorted images is challenging, and the performance of a

model trained and evaluated on such images is 8.6% worse (67.0%→ 58.4%). Using CQD

the performance improves from 58.4% to 63.0%.

On this dataset, a baseline would be to remove the distortion by alignment methods such

as congealing [75], or use a model that estimates deformations during learning, such as spa-

tial transformer networks [77]. These methods are likely to work well but they require the

knowledge of the space of transformations and are non-trivial to implement. On the other

hand, CQD is able to nearly halve the drop in performance of the same CNN model with-

out any knowledge of the nature of distortion and is easy to implement. Thus, CQD may

be used whenever we can model the distortions algorithmically. For example, computer

graphics techniques can be used to model the distortions from underwater imaging.

Color to Non-localized and Low-Resolution Distillation. Here the images have two

different degradations at the same time: the low-quality data is low-resolution images with

the object in clutter, where the high-quality data is high-resolution images cropped by the

bounding boxes provided in the CUB dataset. Without adaptation, the performance drops to

24.9%, more than when only have one type of degradation (57.4% and 39.4% separately).

We want to stress that the type of degradation in domain B can be arbitrary, as long as we
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have the instance-level correspondence between different domains which can be done by

applying known transformations. As shown in the last column of Table 2.1, CQD improves

6.5% (46.2%→ 52.7%) over fine-tuning.

Summary. In summary, we found that domain adaptation is critical since the per-

formance of models trained on high-quality data is poor on the low-quality data. Data

augmentation (A + B) and staged training (A,B) are quite effective, but CQD provides

better improvements suggesting that adapting models on a per-example basis improves

knowledge transfer across domains. CQD is robust and only requires setting a handful of

parameters, such as T and λ, across a wide variety of quality losses. In most cases, CQD

cuts the performance gap between the high- and low-quality data in half.

2.3.1 Simultaneous CQD and Model Compression

In this section, we experiment if a deeper CNN trained on high-quality data can be dis-

tilled to a shallow CNN trained on the low-quality data. This is the most general version of

CQD where both the domains and functions f, g change. The formulation in Equation 2.1

does not require f and g to be identical. However, A + B and A,B baselines cannot be

applied here.

We perform experiments on the CUB dataset using localized and non-localized images

described earlier. The deeper CNN is the sixteen-layer “very deep” model (vgg-vd) and

the shallow CNN is the five-layer vgg-mmodel used in the experiments so far. The optimal

parameters obtained on the validation set for this setting were T = 10, λ = 50.

The results are shown in Table 2.2. The first row contains results using CQD for vgg-m

model which is copied from Table 2.1 for ease of comparison. The third row shows the

same results using the vgg-vd model. The accuracy is higher across all tasks. CQD leads

to an improvement of 2.9% (69.5%→ 72.4%) for the deeper model. The middle row shows

results for training the vgg-m model on non-localized images from a vgg-vd model

trained on the localized images. This leads to a further improvement of 0.9% (63.7% →
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training→ testing
f → g A→A B → B CQD→ B

vgg-m→ vgg-m 67.0 60.8 63.7
vgg-vd→ vgg-m - - 64.6
vgg-vd→ vgg-vd 74.9 69.5 72.4

Table 2.2: Accuracy of various techniques on the CUB localized/non-localized dataset.

64.6%) suggesting that model compression and cross quality distillation can be seamlessly

combined.

2.3.2 Understanding Why CQD Works

2.3.2.1 Relation to curriculum learning

Curriculum learning is the idea that models generalize better when training examples

are presented in the order of their difficulty. Bengio et al. [9] showed a variety of exper-

iments where non-convex learners reach better optima when more difficult examples are

introduced gradually. In one experiment a neural network was trained to recognize shapes.

There were two kinds of shapes: BasicShapes which are canonical circles, squares, and

triangles, and GeomShapes which are affine distortions of the BasicShapes on more

complex backgrounds. When evaluated only on the test set of GeomShapes, the model

first trained on BasicShapes then fine-tuned on GeomShapes, performed better than

the model only trained on GeomShapes, or the one trained with a random ordering of

both types of shapes.

We observe a similar phenomenon when training CNNs on low-quality data. For ex-

ample, on the CARS dataset, staged training [120] A,B outperforms the model trained on

low-resolution data B, when evaluated on the low-resolution data B (48.4% vs. 41.6%).

Since low-quality data is more difficult to recognize, introducing them gradually might

explain the better performance of the staged training and CQD techniques. Additional ben-

19



efits of CQD come from the fact that paired high- and low-quality images allowing better

knowledge transfer through distillation.

2.3.2.2 Understanding CQD through gradient visualizations

Here we investigate how the knowledge transfer occurs between a model trained on

localized images and non-localized images. Our intuition is that by trying to mimic the

model trained on the localized images a model must learn to ignore the background clutter.

In order to verify this, we compute the gradient of log-likelihood of the true label of an

image with respect to the image using the CQD model and B model, both are trained only

on non-localized images. Figure 2.3-left shows the gradients for two different images. The

darkness of each pixel i is proportional to the norm of the gradient vector at that pixel

||Gi||2, Gi = [Gr
i , G

g
i , G

b
i ] for r, g, b color channels. The gradients of the CQD model are

more contained within the bounding box of the object, suggesting a better invariance to

background clutter. As a further investigation we compute the fraction of gradients within

the box: τ = (
∑

i∈box ||Gi||2) / (
∑

i∈image ||Gi||2). This ratio is a measure of how localized

the relevant features are within the bounding box. A model based on a perfect object

detector will have τ = 1. We compute τ for 1000 images for both CQD and B models and

visualize them on a scatter plot as seen in Figure 2.3-right. On average the CQD model has

higher τ than B model, confirming our intuition that the CQD model is implicitly able to

localize objects.

2.4 Experiments on 3D Shape Classification

We have shown that distillation can be used for training across images with different

qualities. In the section, we extent the idea of cross-modal distillation to the 3D shape clas-

sification task. Techniques for analyzing 3D shapes are becoming increasingly important

due to the vast number of sensors that are capturing 3D data, as well as numerous computer

graphics applications. In recent years a variety of deep architectures have been approached
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Figure 2.3: Left: Image and gradient of the image with respect to the true class label for the
model trained on B (non-localized images) and CQD (from a model trained on localized
images). Darker pixels represent higher gradient value. The gradients of the model trained
using CQD are more focused on the foreground object. Right: The scatter plot of the
fraction of total gradient within the bounding-box for 1000 training images for the two
models.

for classifying 3D shapes. These range from multiview approaches that render a shape from

a set of views and deploy image-based classifiers, to voxel-based approaches that analyze

shapes represented as a 3D occupancy grid, to point-based approaches that classify shapes

represented as collection of points. However, there is relatively little work that studies the

tradeoffs offered by these modalities and their associated techniques.

We first see the performance of using one type of the representations (modality), includ-

ing multi-view images, voxels, and point clouds. We also experiment on few-shot learning

setting where only few examples are available (Chapter 2.5.1). For image-based models,

we further investigate different types of renderings and the effect of ImageNet pre-training

(Chapter 2.5.2). Next, we apply distillation across modalities to see if one representation

can guide the training for another. We also investigate if different representations are com-

plementary to each other (Chapter 2.5.3).

We pick a representative technique for each modality. For multiview representation we

choose the Multiview CNN (MVCNN) architecture [149]; For voxel-based representation
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Model VoxNet PointNet MVCNN

Input Mesh Voxels Point Cloud Shaded Image Depth Image Silhouette

(a) Input (b) Voxel (c) Point cloud (d) Phong (e) Depth (f) Silhouette

Figure 2.4: Different representations of the input shape. From the left (a) the shapes in the
database are represented as triangle meshes, (b) the shape converted to a 303 voxel grid,
(c) point cloud representation with 2048 points, and (d-f) the model rendered using Phong
shading, and as depth and binary silhouette images respectively.

we choose the VoxNet [105, 180] constructed using convolutions and pooling operations on

a 3D grid; For point-based representation we choose the PointNet architecture [150]. The

analysis is done on the widely-used ModelNet40 shape classification benchmark [180].

2.4.1 Experimental Setup

2.4.1.1 Classification benchmark.

All our evaluation is done on the ModelNet40 shape classification benchmark [180] fol-

lowing the standard training and test splits provided in the dataset. There are 40 categories

with 9483 training models and 2468 test models. The numbers of models are not equal

across classes hence we report both the per-instance and per-class accuracy on the test set.

While most of the literature report results by training on the entire training set, some earlier

work, notably [149] reports results on training and evaluation on a subset consisting of 80

training and 20 test examples per category.

2.4.1.2 Input representations.

The dataset presents each shape as a collection of triangles, hence it is important to

describe the exact way in which these are converted to point clouds, voxels, and images

for input to different network architectures. These inputs are visualized in Figure 2.4 and

described below:
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• Voxel representation. To get voxel representations we follow the dataset from [122]

where models are discretized to a 30× 30× 30 occupancy grid. The data is available

from the author’s page.

• Point cloud. For point cloud representation we use the data from the PointNet ap-

proach [150] where 2048 points are uniformly sampled for each model.

• Image representation. To generate multiple views of the model we use a setup

similar to [149]. Since the models are assumed to be upright oriented a set of virtual

cameras are placed at 12 radially symmetric locations, i.e. every 30 degrees, facing

the object center and at an elevation of 30 degrees. Comparing to [149], we render

the images with black background and set the field-of-view of the camera such that

the object is bounded by image canvas and rendered as an image of size 224×224. A

similar scheme was used to generate views for semantic segmentation of shapes in the

Shape PFCN approach [79]. This had a non-negligible impact on the performance of

the downstream models as discussed in Chapter 2.5.1. Given the setup we considered

three different ways to render the models described below:

1. Phong shading, where images are rendered with the Phong reflection model [121]

using Blender software [13]. The light and material setup is similar to the ap-

proach in [149].

2. Depth rendering, where only the depth value is recorded.

3. Silhouette rendering, where images are rendered as binary images for pixels

corresponding to foreground.

2.4.1.3 Data augmentation.

Models in the dataset are upright oriented, but not consistently oriented along the axis,

i.e., models could be rotated arbitrarily along the upright direction. Models that rely on

voxel or point cloud input often benefit from rotation augmentation along the upright axis
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during training and testing. Similar to the multiview setting we consider models rotated by

30 degree increments as additional data during training, and optionally aggregating votes

across these instances at test time.

2.4.1.4 Classification Architectures

We consider the following deep architectures for shape classification. Multiview CNN

(MVCNN) The MVCNN architecture [149] uses rendered images of the model from dif-

ferent views as input. Each image is fed into a CNN with shared weights. A max-pooling

layer across different views is used to perform an orderless aggregation of the individual

representations followed by several non-linear layers for classification. While the original

paper [149] used the VGG-M network [145] we also report results using:

• The VGG-11 network, which is the model with configuration A from [145]. The

view-pooling layer is added before the first fc layer.

• Variants of residual networks proposed in [69] such as ResNet18, ResNet34, and

ResNet50. The view-pooling layer is added before the final fc layer.

Voxel network (VoxNet) The VoxNet was first proposed in several early works [105,

180] that uses convolution and pooling layers defined on 3D voxel grids. The early VoxNet

models [105] used two 3D convolutional layers and 2 fully-connected layers. In our

initial experiments we found the capacity of this network is limited. We also exper-

imented with the deeper VoxNet architecture proposed in [150] which has five blocks

of (conv3d-batchnorm-LeakyReLU) and includes batch normalization [76]. All

conv3d layers have kernel size 5, stride 1 and channel size 32. The LeakyReLU has

slope 0.1. Two fully-connected layers (fc-batchnorm-ReLU-fc) are added on top to

obtain class predictions.

Point network (PointNet) We follow the same architecture as PointNet [150] that op-

erates on point cloud representations of a model. The architecture applies a series of non-

linear mappings individually to each input point and performs orderless aggregations using
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max-pooling operations. Thus the model is invariant to the order in which the points are

presented and can directly operate on point clouds without additional preprocessing such

as spatial partitioning, or graph construction. Additionally, some initial layers are used to

perform spatial transformations (rotation, scaling, etc.) Despite its simplicity the model

and its variants have been shown to be effective at shape classification and segmentation

tasks [150, 123].

Training details. All the MVCNN models are trained in two stages as suggested

in [149]. The model is first trained as a single-image classification task where the view-

pooling layer is removed, then trained to jointly classify all the views with view-pooling

layer in the second stage. We use the Adam optimizer [84] with learning rate 5× 10−5 and

1 × 10−5 for first and second stage respectively and each stage is trained with 30 epochs.

The batch size is set to 64 and 96 (eight models with twelve views) for each stage and

the weight decay parameter is set to 0.001. The VoxNet is trained with Adam optimizer

with learning rate 1 × 10−3 for 150 epochs. The batch size is set to 64 and weight decay

parameter is 0.001.

2.5 Results on 3D Shape Classification

We begin by investigating the model generalization in Chapter 2.5.1. Chapter 2.5.2 an-

alyzes the effect of different architectures and renderings for the MVCNN. Chapter 2.5.3

uses cross-modal distillation to improve the performance of VoxNet and PointNet. Chap-

ter 2.5.4 compares the tradeoffs between different representations. Finally, Chapter 2.5.5

puts the results presented in this paper in the context of prior work.

2.5.1 Learning From a Few Examples

One of the most desirable properties of a classifier is its ability to generalize from a few

examples. We test this ability by evaluating the accuracy of different models as a function

of training set size. We select the first Mk models in the training set for each class, where
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Mk = min(Nk, {10, 20, 40, 80, 160, 320, 889}),

andNk is the number of models in class k. The maximum number of models per-class in the

training set of ModelNet40 is 889. Figure 2.5 shows the per-class and per-instance accuracy

for three different models as a function of the training set size. The MVCNN with the VGG-

11 architecture has better generalization than VoxNet and PointNet across all training set

sizes. MVCNN obtains 77.8% accuracy using only 10 training models per class, while

PointNet and VoxNet obtain 62.5% and 57.9% respectively. The performance of MVCNN

is near optimal with 160 models per class, far fewer than PointNet and VoxNet. When

using the whole dataset for training, MVCNN (95.0%) outperforms PointNet (89.1%) and

VoxNet (85.6%) by a large margin.

Several improvements have been proposed for both point-based and voxel-based ar-

chitectures. The best performing point-based models to the best of our knowledge is the

Kd-Networks [85] which achieves 91.8% per-instance accuracy. For voxel-based models,

O-CNN [176] uses sparse convolutions to handle higher resolution with Octave trees [107]

and achieves 90.6% per-instance accuracy. However, all of them are far below the MVCNN

approach. More details and comparison to the state-of-the-art are in Chapter 2.5.5.

2.5.2 Dissecting the MVCNN Architecture

Given the high performance of MVCNN we investigate what factors contribute to its

performance as described next.

2.5.2.1 Effect of model architecture.

The MVCNN model in [149] used VGG-M architecture. However a number of dif-

ferent image networks have since been proposed. We used different CNN architectures

for MVCNN and report the accuracies in Table 2.3. All models have similar performance

suggesting that MVCNN is robust across different CNN architectures. In Table 2.5 we also
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Figure 2.5: Classification accuracy as a function of training set size. MVCNN generalizes
better than the other approaches. The two MVCNN curves correspond to variants with and
without ImageNet pretraining.

compare with the results using VGG-M and AlexNet. With the same shaded images and

training subset, VGG-11 achieves 89.1% and VGG-M has 89.9% accuracy.

Model Per class acc. Per instance acc.

VGG-11 92.4 95.0
ResNet 18 92.8 95.6
ResNet 34 93.4 95.9
ResNet 50 94.0 95.5

Table 2.3: Accuracy (%) of MVCNN with different CNN architectures. The VGG-11
architectures are on par with the residual network variants.

2.5.2.2 Effect of ImageNet pretraining.

MVCNN benefits from transfer learning from ImageNet classification task. However,

even without ImageNet pretraining, the MVCNN achieves 91.3% per-instance accuracy

(Table 2.4). This is higher than several point-based and voxel-based approaches. Figure 2.5

plots the performance of the MVCNN with VGG-11 network without ImageNet pretraining

across training set sizes showing this trend is true throughout the training regime. In Chap-

ter 2.5.3 we study if ImageNet pretraining can benefit such approaches using cross-modal

transfer learning.
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Model Per class acc. Per instance acc.

VGG-11 w/ ImageNet pretraining 92.4 95.0
VGG-11 w/o ImageNet pretraining 88.7 91.3

Table 2.4: Effect of ImageNet pretraining on the accuracy (%) of MVCNN. The VGG-11
architecture is used and the full training/test split of the ModelNet40 dataset is used.

2.5.2.3 Effect of shape rendering.

We analyze the effect of different rendering approaches for input to a MVCNN model

in Table 2.5. Sphere rendering proposed in [122] refers to rendering each point as a sphere

and was shown to improve performance with AlexNet MVCNN architectures. We first

compared the tight field-of-view rendering with black background in this work to the ren-

dering in [149]. Since [149] only reported results on the 80/20 training/test split, we first

compared the performance of the VGG-11 networks using images from [149]. The perfor-

mance difference was negligible. However with our shaded images the performance of the

VGG-11 network improves by more than 2%.

Using depth images, the per instance accuracy is 3.4% lower than using shaded images,

but concatenating shaded images with depth images gives 1.2% improvement. Further-

more, we found the shading information only provides 1.4% improvements over the binary

silhouette images. This suggests that most of the discriminative shape information used by

the MVCNN approaches lie in the boundary of the object.

2.5.3 Cross-Modal Distillation

Knowledge distillation [18, 72] was proposed for model compression tasks. They

showed the performance of the model can be improved by training to imitate the output

of a more accurate model. This technique has also been applied on transferring rich rep-

resentations across modalities. For example, a model trained with images can be used to

guide learning of a model for depth images [61], or to a model for sound waves [4]. We
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Model Rendering
Full training/test 80/20 training/test

Per class Per instance Per class Per instance

VGG-M Shaded from [149] - - 89.9 89.9
VGG-M Shaded from [149] (80×) - - 90.1 90.1
VGG-11 Shaded from [149] - - 89.1 89.1
VGG-11 Shaded 92.4 95.0 92.4 92.4
VGG-11 Depth 89.8 91.6
VGG-11 Shaded + Depth 94.7 96.2
VGG-11 Silhouettes 90.7 93.6
AlexNet Sphere rendering (20×) 89.7 92.0

AlexNet-MR Sphere rendering (20×) 91.4 93.8

Table 2.5: Accuracy (%) of MVCNN with different rendering methods. The number in the
brackets are the number of views used. 12 views are used if not specified.

investigate such techniques for learning across different 3D representations; Specifically

from MVCNN model to PointNet and VoxNet models.

To do this we first train the ImageNet initialized VGG-11 network on the full training

set. The logits (the last layer before the softmax) are extracted on the training set. A

PointNet (or VoxNet) model is then trained to minimize

n∑
i=1

L (σ(zi), yi) + λ
n∑
i=1

L
(
σ
(zi
T

)
, σ
(xi
T

))
(2.2)

where xi and zi are the logits from the MVCNN model and from the model being trained

respectively, yi is the class label of the input si, σ(x) is the softmax function, and L is the

cross-entropy loss L(p, q) = −∑ pi log qi. T is the temperature for smoothing the targets.

λ, T are set by grid search for T ∈ [1, 20], λ ∈ [1, 100]. For example, in PointNet the best

hyper-parameters are T = 20, λ = 50 when training set is small, and T = 15, λ = 10

when the training set is larger. In VoxNet we set T = 10, λ = 100 in all cases. Figure 2.6

shows the result of training VoxNet and PointNet with distillation. For VoxNet the per

instance accuracy is improved from 85.6% to 87.4% with whole training set; For PointNet

the accuracy is improved from 89.1% to 89.4%. The improvement is slightly bigger when

there is less training data.
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Figure 2.6: Model distillation from MVCNN to VoxNet and PointNet. The accuracy is
improved by 1.8% for VoxNet and 0.3% for PointNet with whole training set.

2.5.4 Tradeoffs between Learned Representations

In this section, we analyze the tradeoffs between the different shape classifiers. Ta-

ble 2.6 compares their speed, memory, and accuracy. The MVCNN model has more pa-

rameters and is slower, but the accuracy is 5.9% better than PointNet and 9.4% better than

VoxNet. Even though the number of FLOPS are far higher for MVCNN the relative effi-

ciency of 2D convolutions results in slightly longer evaluation time compared to VoxNet

and PointNet.

We further use an ensemble model combining images, voxels, and point cloud repre-

sentations. A simple way is to average the predictions from different models. As shown in

Figure 2.7, the ensemble of VoxNet and PointNet has better performance than using single

model. However, the predictions from MVCNN dominate VoxNet and PointNet and gives

no benefit for combining the predictions from other models with MVCNN. A more com-

plex scheme where we trained a linear model on top of features extracted from penultimate

layers of these networks did not provide any improvements either.
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Model Forward time # params Memory (GB) Per class acc. (%) Per ins. acc. (%)

MVCNN 25.8 ms 128.9M 10.0 92.4 95.0
VoxNet 1.3 ms 1.4M 2.0 81.4 (82.5) 85.6 (87.4)

PointNet 3.1 ms 3.5M 4.4 86.1 (86.7) 89.1 (89.4)

Table 2.6: Accuracy, speed and memory comparison of different models. Memory usage
during training which includes parameters, gradients, and layer activations, for a batch size
64 is shown. Forward-pass time is also calculated with batch size 64 using PyTorch with a
single GTX Titan X for all the models. The input resolutions are 224 × 224 for MVCNN,
323 for VoxNet, and 1024 points for PointNet. The accuracy numbers in brackets are for
models trained with distillation as described in Chapter 2.5.3.
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Figure 2.7: Accuracy obtained by ensembling models. Left shows results by averaging
the predictions while right shows results by training a linear model on the concatenated
features extracted from different models.

2.5.5 Comparison to Prior Work

We compare our MVCNN result with prior works in Table 2.7. The results are grouped

by the input type. For multi-view image-based models, our MVCNN achieves 95.0% per

instance accuracy, which is the best result between all competing approaches. Rotation

Net [80], which predicts the object pose and class labels at the same time, is 0.2% worse

than our MVCNN. Dominant Set Clustering [173] works by clustering image features

across views and pooling within the clusters. Its performance is 1.0% lower than Rotation-

Net. MVCNN-MultiRes [122] is the most related to our work. They showed that MVCNN

with sphere rendering can achieve better accuracy than voxel-based network, suggesting
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that there is room for improvement in VoxNet. Our VoxNet experiment corroborates to this

conclusion. Furthermore, MVCNN-MultiRes uses images in multiple resolutions to boost

its performance.

For point-based methods, PointNet [150] and DeepSets [186] use symmetric functions,

i.e. max/mean pooling layers, to generate permutation invariant point cloud descriptions.

DynamicGraph [178] builds upon PointNet by performing symmetric function aggrega-

tions on points within a neighborhood, instead of the whole set. Such neighborhood is

computed dynamically by building nearest neighbor graph using distances defined in the

feature space. Similarly, Kd-Networks [85] work by precomputing a graph induced by a

binary spatial partitioning tree and use it to apply local linear operations. The best point-

based method is 2.8% less accurate then our MVCNN.

For voxel-based methods, VoxNet [105] and 3DShapeNets [180] work by applying 3D

convolutions on voxels. ORION [140] is based on VoxNet but predicts the orientation in

addition to class labels. OctNet [132] and O-CNN [176] are able to process higher resolu-

tion grids by using an octree representation. FusionNet [71] combines the voxel and image

representations to improve the performance to 90.8%. Our experiments in Chapter 2.5.4

suggests that since MVCNN already has 95.0% accuracy the benefit of combining different

representations is not effective.
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Model Input Per class acc. Per ins. acc.

Our MVCNN

Images

92.4 95.0
RotationNet [80] - 94.8

Dominant Set Clustering [173] - 93.8
MVCNN-MultiRes [122] 91.4 93.8
PANORAMA-NN [143] 90.7

MVCNN [149] 90.1 90.1
DynamicGraph [178]

PC

90.2 92.2
Kd-Networks [85] - 91.8

LocalFeatureNet [144] - 90.8
PointNet++ [123] - 90.7
DeepSets [186] - 90.0
PointNet [150] 86.2 89.2

VRN Single [17]

Voxels

- 91.3
O-CNN [176] 90.6
ORION [140] - 89.7
VoxNet [105] - 83.0

3DShapeNets [180] 77.3 84.7
PointNet++ [123] PC+Normal - 91.9

FusionNet [71] Voxels+Images - 90.8

Table 2.7: Accuracy (%) of state-of-the-art methods with different 3D representations. PC
refers to point clouds. The order is grouped by input type and sorted by accuracy.
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CHAPTER 3

IMPROVING FEW-SHOT LEARNING WITH SELF-SUPERVISED
LEARNING

We have shown that transfer learning on small datasets can be improved via cross-modal

distillation; however, most of the time we only have images as training data. Current ma-

chine learning methods based on deep neural networks need enormous amounts of training

data to learn new tasks. Even with transfer learning, the performances on few-shot classes

are hard to improve. This is an issue for many practical problems across domains such

as biology and medicine where labeled data is hard to come by. In contrast, we humans

can quickly learn new concepts from limited training data by relying on our past “visual

experience”. Recent work attempts to emulate this by training a feature representation to

classify a training dataset of “base” classes with the hope that the resulting representation

generalizes not just to unseen examples of the same classes but also to novel classes, which

may have very few training examples (called few-shot learning). However, training for

base class classification can force the network to only encode features that are useful for

distinguishing between base classes. In the process, it might discard semantic information

that is irrelevant for base classes but critical for novel classes. This might be especially true

when the base dataset is small or when the class distinctions are challenging.

One way to recover this useful semantic information is to leverage representation learn-

ing techniques that do not use class labels, namely, unsupervised or self-supervised learn-

ing. The key idea is to learn about statistical regularities within images, such as the spatial

relationship between patches, or its orientation, that might be a cue to semantics. Despite

recent advances, these techniques have only been applied to a few domains (e.g., entry-level
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Figure 3.1: Combining supervised and self-supervised losses for few-shot learning.
Self-supervised tasks such as jigsaw puzzle or rotation prediction act as a data-dependent
regularizer for the shared feature backbone. Our work investigates how the performance
on the target task domain (Ds) is impacted by the choice of the domain used for self-
supervision (Dss).

classes on internet imagery), and under the assumption that large amounts of unlabeled im-

ages are available. Their applicability to the general few-shot scenario is unclear. In partic-

ular, can these techniques prevent overfitting to base classes and improve performance on

novel classes in the few-shot setting? If so, does the benefit generalize across domains and

to more challenging tasks? Moreover, can self-supervision boost performance in domains

where even unlabeled images are hard to get?

In this chapter we seek to answer these questions. We show that with no additional

training data, adding a self-supervised task as an auxiliary task (Fig. 3.1) improves the

performance of existing few-shot techniques on benchmarks across a multitude of domains

(Fig. 3.2), in agreement with conclusions from similar recent work [52]. Intriguingly, we

find that the benefits of self-supervision increase with the difficulty of the task, for example

when training from a smaller base dataset, or with degraded inputs such as low resolution

or greyscale images (Fig. 3.3).

One might surmise that as with traditional SSL, additional unlabeled images might im-

prove performance further. But what unlabeled images should we use for novel problem

domains where unlabeled data is not freely available? To answer this, we conduct a se-

ries of experiments with additional unlabeled data from different domains. We find that
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adding more unlabeled images improves performance only when the images used for self-

supervision are within the same domain as the base classes (Fig. 3.4a); otherwise, they

can even negatively impact the performance of the few-shot learner (Fig. 3.4b). Based on

this analysis, we present a simple approach that uses a domain classifier to pick similar-

domain unlabeled images for self-supervision from a large and generic pool of images

(Fig. 3.5). The resulting method improves over the performance of a model trained with

self-supervised learning from images within the dataset (Fig. 3.6). Taken together, this

results in a powerful, general, and practical approach for improving few-shot learning on

small datasets in novel domains.

3.1 Method

We adopt the commonly used setup for few-shot learning where one is provided with

labeled training data for a set of base classes Db and a much smaller training set (typi-

cally 1-5 examples per class) for novel classes Dn. The goal of the few-shot learner is to

learn representations on the base classes that lead to good generalization on novel classes.

Although in theory the base classes are assumed to have a large number of labeled exam-

ples, in practice this number can be quite small for novel or fine-grained domains, e.g. less

than 5000 images for the birds dataset [179], making it challenging to learn a generalizable

representation.

Our framework, as seen in Fig. 3.1, combines meta-learning approaches for few-shot

learning with self-supervised learning. Denote a labeled training datasetDs as {(xi, yi)}ni=1

consisting of pairs of images xi ∈ X and labels yi ∈ Y . A feed-forward convolutional

network f(x) maps the input to an embedding space which is then mapped to the label

space using a classifier g. The overall mapping from the input to the label can be written

as g ◦ f(x) : X → Y . Learning consists of estimating functions f and g that minimize

an empirical loss ` over the training data along with suitable regularization R over the

functions f and g. This can be written as:
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Ls :=
∑

(xi,yi)∈Ds

`
(
g ◦ f(xi), yi

)
+R(f, g).

A commonly used loss is the cross-entropy loss and a regularizer is the `2 norm of the

parameters of the functions. In a transfer learning setting g is discarded and relearned on

training data for novel classes.

We also consider self-supervised losses Lss based on labeled data x → (x̂, ŷ) that can

be derived automatically without any human labeling. Fig. 3.1 shows two examples: the

jigsaw task rearranges the input image and uses the index of the permutation as the target

label, while the rotation task uses the angle of the rotated image as the target label. A

separate function h is used to predict these labels from the shared feature backbone f with

a self-supervised loss:

Lss :=
∑
xi∈Dss

`
(
h ◦ f(x̂i), ŷi

)
.

Our final loss combines the two: L := Ls + Lss and thus the self-supervised losses act

as a data-dependent regularizer for representation learning. The details of these losses are

described in the next sections.

Note that the domain of images used for supervised Ds and self-supervised Dss losses

need not to be identical. In particular, we would like to use larger sets of images for self-

supervised learning from related domains. The key questions we ask are: (1) How effective

is SSL when Ds = Dss especially when we have a small sample of Ds? (2) How do the

domain shifts between Ds and Dss affect generalization performance? and (3) How to

select images from a large, generic pool to construct an effective Dss given a target domain

Ds?

3.1.1 Supervised Losses (Ls)

Most of our results are presented using a meta-learner based on prototypical networks [146]

that perform episodic training and testing over sampled datasets in stages called meta-

training and meta-testing. During meta-training, we randomly sample N classes from the
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base set Db, then we select a support set Sb with K images per class and another query

set Qb with M images per class. We call this an N -way K-shot classification task. The

embeddings are trained to predict the labels of the query setQb conditioned on the support

set Sb using a nearest mean (prototype) classifier. The objective is to minimize the pre-

diction loss on the query set. Once training is complete, given the novel dataset Dn, class

prototypes are recomputed for classification and query examples are classified based on the

distances to the class prototypes.

Prototypical networks are related to distance-based learners such as matching networks [171]

or metric-learning based on label similarity [86]. We also present few-shot classification

results using a gradient-based meta-learner called MAML [46], and one trained with a

standard cross-entropy loss on all the base classes.

3.1.2 Self-supervised Losses (Lss)

We consider two losses motivated by a recent large-scale comparison of the effective-

ness of self-supervised learning tasks [57] described below:

• Jigsaw puzzle task loss. Here the input image x is tiled into 3×3 regions and per-

muted randomly to obtain an input x̂. The target label ŷ is the index of the permuta-

tion. The index (one of 9!) is reduced to one of 35 following the procedure outlined

in [113], which grouped the possible permutations based on the hamming distance to

control the difficulty of the task.

• Rotation task loss. We follow the method of [54] where the input image x is rotated

by an angle θ ∈ {0°, 90°, 180°, 270°} to obtain x̂ and the target label ŷ is the index

of the angle.

In both cases we use the cross-entropy loss between the target and prediction.
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3.1.3 Stochastic Sampling and Training

When the images used for SSL and meta-learning are identical, i.e., Ds = Dss, the

same batch of images are used for computing both losses Ls and Lss. For experiments

investigating the effect of domain shifts described in Chapter 3.2.3 and 3.2.4, where SSL

and meta-learner are trained on different domains, i.e. Ds 6= Dss, a separate batch of size

of 64 is used for computing Lss. After the two forward passes, one for the supervised task

and one for the self-supervised task, the two losses are combined and gradient updates are

performed. While other techniques exist [29, 82, 141], simply averaging the two losses

performed well.

3.2 Experiments

We first describe the datasets and experimental details. In Chapter 3.2.2, we present the

results of using SSL to improve few-shot learning on various datasets. In Chapter 3.2.3,

we show the effect of domain shift between labeled and unlabeled data for SSL. Last, we

propose a way to select images from a pool for SSL to further improve the performance of

few-shot learning in Chapter 3.2.4.

3.2.1 Experimental Setup

Datasets and benchmarks. We experiment with datasets across diverse domains:

Caltech-UCSD birds [179], Stanford cars [91], FGVC aircrafts [104], Stanford dogs [83],

and Oxford flowers [112]. Each dataset contains between 100 and 200 classes with a few

thousands of images. We also experiment with the widely-used mini-ImageNet [171] and

tiered-ImageNet [131] benchmarks for few-shot learning. In mini-ImageNet, each class

has 600 images, wherein tiered-ImageNet each class has 732 to 1300 images.

We split classes within a dataset into three disjoint sets: base, val, and novel. For

each class, all the images in the dataset are used in the corresponding set. A model is

trained on the base set of categories, validated on the val set, and tested on the novel set of
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Birds Cars Aircrafts Dogs Flowers

Setting Set Stats
mini-

ImageNet
tiered-

ImageNet Birds Cars Aircrafts Dogs Flowers

Few-shot
transfer

Base
classes 64 351 100 98 50 60 51
images 38,400 448,695 5885 8162 5000 10337 4129

Val
classes 16 97 50 49 25 30 26
images 9,600 124,261 2950 3993 2500 5128 2113

Novel
classes 20 160 50 49 25 30 25
images 12,000 206,209 2953 4030 2500 5115 1947

Table 3.1: Example images and dataset statistics. For few-shot learning experiments the
classes are split into base, val, and novel set. Image representations learned on base set are
evaluated on the novel set while val set is used for cross-validation. These datasets vary in
the number of classes but are orders of magnitude smaller than ImageNet dataset.

categories given a few examples per class. For birds, we use the same split as [27], where

{base, val, novel} sets have {100, 50, 50} classes respectively. The same ratio is used for

the other four fine-grained datasets. We follow the original splits for mini-ImageNet and

tiered-ImageNet. The statistics of various datasets used in our experiments are shown in

Table 3.1. Notably, fine-grained datasets are significantly smaller.

We also present results on a setting where the base set is “degraded” either by (1) re-

ducing the resolution, (2) removing color, or (3) reducing the number of training examples.

This allows us to study the effectiveness of SSL on even smaller datasets and as a function

of the difficulty of the task.

Meta-learners and feature backbone. We follow the best practices and use the code-

base for few-shot learning described in [27]. In particular, we use ProtoNet [146] with a

ResNet-18 [69] network as the feature backbone. Their experiments found this to be the

40



best performing. We also present experiments with other meta-learners such as MAML [46]

and softmax classifiers in Chapter 3.2.2.

Learning and optimization. We use 5-way (classes) and 5-shot (examples per-class)

with 16 query images for training. For experiments using 20% of labeled data, we use 5

query images for training since the minimum number of images per class is 10. The models

are trained with ADAM [84] with a learning rate of 0.001 for 60,000 episodes. We report

the mean accuracy and 95% confidence interval over 600 test experiments. In each test

episode, N classes are selected from the novel set, and for each class 5 support images and

16 query images are selected. We report results for N = {5, 20} classes.

Image sampling and data augmentation. Data augmentation has a significant impact

on few-shot learning performance. We follow the data augmentation procedure outlined

in [27] which resulted in a strong baseline performance. For label and rotation predictions,

images are first resized to 224 pixels for the shorter edge while maintaining the aspect ratio,

from which a central crop of 224×224 is obtained. For jigsaw puzzles, we first randomly

crop 255×255 region from the original image with random scaling between [0.5, 1.0], then

split into 3×3 regions, from which a random crop of size 64×64 is picked. While it might

appear that with self-supervision the model effectively sees more images, SSL provides

consistent improvements even after extensive data augmentation including cropping, flip-

ping, and color jittering.

3.2.2 Results on Few-shot Learning

3.2.2.1 Self-supervised learning improves few-shot learning

Fig. 3.2 shows the accuracies of various models on few-shot learning benchmarks. Our

ProtoNet baseline matches the results of the mini-ImageNet and birds datasets presented

in [27] (in their Table A5). Our results show that jigsaw puzzle task improves the ProtoNet

baseline on all seven datasets. Specifically, it reduces the relative error rate by 4.0%,

8.7%, 19.7%, 8.4%, 4.7%, 15.9%, and 27.8% on mini-ImageNet, tiered-ImageNet, birds,
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Figure 3.2: Benefits of SSL for few-shot learning tasks. We show the accuracy of the
ProtoNet baseline of using different SSL tasks. The jigsaw task results in an improvement
of the 5-way 5-shot classification accuracy across datasets. Combining SSL tasks can be
beneficial for some datasets. Here SSL was performed on images within the base classes
only.
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Figure 3.3: Benefits of SSL for harder few-shot learning tasks. We show the accuracy of
using the jigsaw puzzle task over ProtoNet baseline on harder versions of the datasets. We
see that SSL is effective even on smaller datasets and the relative benefits are higher.

cars, aircrafts, dogs, and flowers datasets respectively. Predicting rotations also improves

the ProtoNet baseline on most of the datasets, except for aircrafts and flowers. We speculate

this is because most flower images are symmetrical, and airplanes are usually horizontal,

making the rotation task too hard or too trivial respectively to benefit the main task. In

addition, combining these two SSL tasks can be beneficial sometimes.

3.2.2.2 Gains are larger for harder tasks

Fig. 3.3 shows the performance on the degraded version of the same datasets (first five

groups). For cars and aircrafts we use low-resolution images where the images are down-
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Loss
Birds Cars Aircrafts Dogs Flowers

5-way 5-shot

Softmax 81.5±0.5 87.7±0.5 89.2±0.4 77.6±0.6 91.0±0.5
Softmax + Jigsaw 83.9±0.5 90.6±0.5 89.6±0.4 77.8±0.6 91.1±0.5

MAML 81.2±0.7 86.9±0.6 88.8±0.5 77.3±0.7 79.0±0.9
MAML + Jigsaw 81.1±0.7 89.0±0.5 89.1±0.5 77.3±0.7 82.6±0.7

ProtoNet 87.3±0.5 91.7±0.4 91.4±0.4 83.0±0.6 89.2±0.6
ProtoNet + Jigsaw 89.8±0.4 92.4±0.4 91.8±0.4 85.7±0.5 92.2±0.4

Table 3.2: Performance on few-shot learning using different meta-learners. Using
jigsaw puzzle loss improves different meta-learners on most of the datasets. ProtoNet with
jigsaw loss performs the best on all five datasets.

sampled by a factor of four and up-sampled back to 224×224 with bilinear interpolation.

For natural categories we discard color. Low-resolution images are considerably harder to

classify for man-made categories while color information is most useful for natural cate-

gories [153]. On birds and dogs datasets, the improvements using self-supervision (3.2%

and 2.9% on 5-way 5-shot) are higher compared to color images (2.5% and 2.7%), simi-

larly on the cars and aircrafts datasets with low-resolution images (2.2% and 2.1% vs. 0.7%

and 0.4%). We also conduct an experiment where only 20% of the images in the base cate-

gories are used for both SSL and meta-learning (last five groups in Fig. 3.3). This results in

a much smaller training set than standard few-shot benchmarks: 20% of the birds dataset

amounts to only roughly 3% of the popular mini-ImageNet dataset. We find larger bene-

fits from SSL in this setting. For example, the gain from the jigsaw puzzle loss for 5-way

5-shot car classification increases from 0.7% (original dataset) to 7.0% (20% training data).

3.2.2.3 Improvements generalize to other meta-learners

We combine SSL with other meta-learners and find the combination to be effective. In

particular, we use MAML [46] and a standard feature extractor trained with cross-entropy

loss (softmax) as in [27]. Table 3.2 compares meta-learners based on a ResNet-18 network
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Model Image Size Backbone SSL Accuracy (%)

MAML [46]

84×84

Conv4-64 - 63.1
ProtoNet [146] Conv4-64 - 68.2

RelationNet [158] Conv4-64 - 65.3
LwoF [53] Conv4-64 - 72.8
PFA [125]∗ WRN-28-10 - 73.7

TADAM [117] ResNet-12 - 76.7
LEO [135]∗ WRN-28-10 - 77.6

MetaOptNet-SVM [99]† ResNet-12 - 78.6
Chen et al. [27]

(ProtoNet)
84×84 Conv4-64 - 64.2

224×224 ResNet-18 - 73.7

Gidaris et al. [52]
(ProtoNet) 84×84

Conv4-64
- 70.0

Rotation 71.7

Conv4-512
- 71.6

Rotation 74.0

WRN-28-10
- 68.7

Rotation 72.1

Ours
(ProtoNet) 224×224 ResNet-18

- 75.2
Rotation 76.0
Jigsaw 76.2

Rot.+Jig. 76.6

Table 3.3: Comparison with prior works on mini-ImageNet. 5-shot 5-way classification
accuracies on 600 test episodes are reported. The implementation details including image
size, backbone model, and training are different in each paper. ∗validation classes are used
for training. †dropblock [51], label smoothing, and weight decay are used.

trained with and without jigsaw puzzle loss. We observe that the average 5-way 5-shot

accuracies across five fine-grained datasets for softmax, MAML, and ProtoNet improve

from 85.5%, 82.6%, and 88.5% to 86.6%, 83.8%, and 90.4% respectively when combined

with the jigsaw puzzle task. Self-supervision improves performance across different meta-

learners and different datasets; however, ProtoNet trained with self-supervision is the best

model across all datasets.
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3.2.2.4 Self-supervision alone is not enough

SSL alone significantly lags behind supervised learning in our experiments. For exam-

ple, a ResNet-18 trained with SSL alone achieve 32.9% (w/ jigsaw) and 33.7% (w/ rotation)

5-way 5-shot accuracy averaged across five fine-grained datasets. While this is better than

a random initialization (29.5%), it is dramatically worse than one trained with a simple

cross-entropy loss (85.5%) on the labels Surprisingly, we also found that initialization with

SSL followed by meta-learning did not yield improvements over meta-learning starting

from random initialization, supporting the view that SSL acts as a feature regularizer.

3.2.2.5 Few-shot learning as an evaluation for self-supervised tasks

The few-shot classification task provides a way of evaluating the effectiveness of self-

supervised tasks. For example, on 5-way 5-shot aircrafts classification, training with only

jigsaw and rotation task gives 38.8% and 29.5% respectively, suggesting that rotation is not

an effective self-supervised task for airplanes. We speculate that it might be because the

task is too easy as airplanes are usually horizontal.

3.2.2.6 Comparison with prior works

Our results also echo those of [52] who find that the rotation task improves on mini-

and tiered-ImageNet. In addition we show the improvement still holds when using deeper

networks, higher resolution images, and in fine-grained domains. We provide a comparison

with other few-shot learning methods in Table 3.3.

3.2.3 Analyzing the Effect of Domain Shift for Self-supervision

Scaling SSL to massive unlabeled datasets that are readily available for some domains is

a promising avenue for improvement. However, do more unlabeled data always help for a

task in hand? This question hasn’t been sufficiently addressed in the literature as most prior

works study the effectiveness of SSL on a curated set of images, such as ImageNet, and

their transferability to a handful of tasks. We conduct a series of experiments to characterize
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Figure 3.4: Effect of size and domain of SSL on 5-way 5-shot classification accuracy.
(a) More unlabeled data from the same domain for SSL improves the performance of the
meta-learner. (b) Replacing a fraction (x-axis) of the images with those from other domains
makes SSL less effective.

the effect of size and distribution Dss of images used for SSL in the context of few-shot

learning on domain Ds.

First, we investigate if SSL on unlabeled data from the same domain improves the meta-

learner. We use 20% of the images in the base categories for meta-learning identical to the

setting in Fig. 3.3. The labels of the remaining 80% data are withheld and only the images

are used for SSL. We systematically vary the number of images used by SSL from 20%

to 100%. The results are presented in Fig. 3.4a. The accuracy improves with the size of

the unlabeled set with diminishing returns. Note that 0% corresponds to no SSL and 20%

corresponds to using only the labeled images for SSL (Ds = Dss).

Fig. 3.4b shows an experiment where a fraction of the unlabeled images are replaced

with images from other four datasets. For example, 20% along the x-axis for birds indicate

that 20% of the images in the base set are replaced by images drawn uniformly at random

from other datasets. Since the numbers of images used for SSL is identical, the x-axis

from left to right represents increasing amounts of domain shifts between Ds and Dss. We

observe that the effectiveness of SSL decreases as the fraction of out-of-domain images
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Figure 3.5: Overview of domain selection for self-supervision. Top: We first train a
domain classifier using Ds and (a subset of) Dp, then select images using the predictions
from the domain classifier for self-supervision. Bottom: Selected images of each dataset
using importance weights.

20% Birds 20% Cars 20% Aircrafts 20% Dogs 20% Flowers 20% mini-ImageNet
65

70

75

80

85

90

A
cc

ur
ac

y

no SSL SSL 20% dataset SSL pool (random) SSL pool (weight) Oracle

Figure 3.6: Effectiveness of selected images for SSL. With random selection, the extra
unlabeled data often hurts the performance, while those sampled using the importance
weights improve performance on all five datasets.

increases. Importantly, training with SSL on the available 20% within domain images

(shown as crosses) is often (on 3 out of 5 datasets) better than increasing the set of images

by five times to include out of domain images.
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3.2.4 Selecting Images for Self-supervision

Based on the above analysis we propose a simple method to select images for SSL

from a large, generic pool of unlabeled images in a dataset dependent manner. We use

a “domain weighted” model to select the top images based on a domain classifier, in our

case a binary logistic regression model trained with images from the source domain Ds
as the positive class and images from the pool Dp as the negative class based on ResNet-

101 image features. The top images are selected according to the ratio p(x ∈ Ds)/p(x ∈

Dp). Note that these importance weights account for the domain shift. Fig. 3.5 shows an

overview of the selection process.

We evaluate this approach using a pool of images Dp consisting of (1) the training

images of the “bounding box” subset of Open Images V5 [94] which has 1,743,042 images

from 600 classes, and (2) iNaturalist 2018 dataset [166] which has 461,939 images from

8162 species. For each dataset, we use 20% of the labeled images as Ds. The rest 80% of

the data are only used as the “oracle” where the unlabeled data are drawn from the exact

same distribution as Ds. We show some of the selected images for self-supervision Dss in

Fig. 3.5.

Fig. 3.6 shows the results of ProtoNet trained on 20% labeled examples with jigsaw

puzzle as self-supervision. To have a fair comparison, for methods of selecting images

from the pool, we select the same number (80% of the original labeled dataset size) of

images as Dss. We report the mean accuracy of five runs. “SSL with 20% dataset” denotes

a baseline of only using Ds for self-supervision (Ds = Dss), which is our reference “lower

bound”. SSL pool “(random)” and “(weight)” denote two approaches of selecting images

for self-supervision. The former selects images uniformly at random, which is detrimental

for cars, dogs, and flowers. The pool selected according to the importance weights provides

significant improvements over “no SSL”, “SSL with 20% dataset”, and “random selection”

baselines on all five datasets. The oracle is trained with the remaining 80% of the original

dataset as Dss, which is a reference “upper bound”.
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CHAPTER 4

A REALISTIC EVALUATION ON SEMI-SUPERVISED LEARNING

In Chapter 3, we have shown that self-supervised learning can improve the perfor-

mance on few-shot classes, and an additional set of unlabeled data can further boost the

performance if the data are from a similar distribution. However, when we have a large

set of unlabeled data, it is natural to ask if semi-supervised learning (Semi-SL) methods

can also be applied in addition to few-shot and unsupervised methods. Indeed, Zhai et

al. [188] has combined semi-supervised and self-supervised methods to boost the perfor-

mance, and Chen et al. [26] showed that self-training can achieve state-of-the-art results on

semi-supervised benchmarks thanks to the recent advances in contrastive learning. Yet,

the current literature on Semi-SL with deep networks for image classification has two

main shortcomings. First, most methods are evaluated on curated datasets such as CI-

FAR, SVHN, or ImageNet, where class distribution is or is close to uniform and unlabeled

data contains no novel classes. This is implicit in methods that rely on the assumption that

the data is uniformly clustered, use a uniform instead of class-balanced loss, or categorize

unlabeled data into one of the labeled classes. In practice, however, class distribution can

be highly unbalanced or even unknown, and the unlabeled data may contain novel classes.

How effective is Semi-SL in these situations?

Second, most literature has focused on training models from scratch. However, a practi-

cal approach for few-shot learning is to use expert models trained on large labeled datasets

such as ImageNet [134] or iNaturalist [167]. What gains does Semi-SL provide in this set-

ting, especially since many Semi-SL methods are based on learning invariances from data
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based on transformations which might have already been learned by the experts during su-

pervised training? Moreover, is out-of-domain data beneficial when experts are available?

In this chapter, we aim to answer these questions by conducting a systematic study

of Semi-SL techniques (Fig. 4.1) on two fine-grained classification datasets that exhibit

a long-tailed distribution of classes and contain a large number of out-of-class images

(Fig. 4.2). These datasets are obtained by sampling classes under the Aves (birds) and

Fungi taxonomy. The out-of-class images are other Aves (or Fungi) images not belong-

ing to the classes within the labeled set. The first dataset was part of the semi-supervised

challenge at FGVC7 workshop [154], while the second one is constructed from the FGVC

fungi challenge [48] following a similar scheme, details of which are described in § 4.1.

On these datasets, we conduct a systematic study of existing deep-learning-based semi-

supervised learning approaches for image classification. We perform experiments on Semi-

SL methods including Pseudo-Label [97], Curriculum Pseudo-Label [22], FixMatch [148],

self-training using distillation [183], self-supervised learning (MoCo [66]), as well as their

combinations when effective. We investigate strategies for using unlabeled data when mod-

els are initialized from experts. We also evaluate the performance of methods that use un-

labeled data from the same classes as the labeled dataset (Uin) and a practical setting where

the unlabeled data includes out-of-class images (Uin + Uout). The high-level summary of

the experiments reported in Fig. 4.1, Tab. 4.3, 4.4, and Fig. 4.4 are as follows:

• Some of the Semi-SL methods are effective when models are trained from scratch, espe-

cially those with self-supervised pre-training can significantly benefit from out-of-class

data (long blue whiskers and longer orange whiskers above the baseline for scratch in

Fig. 4.1). In this setting, self-supervised learning followed by distillation-based self-

training performs the best (Tab. 4.3 and 4.4).

• The best Semi-SL approach significantly under-performs the supervised fine-tuning model

trained on the labeled portion of the datasets (the baseline performance of ImageNet and

iNat is higher than any Semi-SL model trained from scratch in Fig. 4.1).
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Figure 4.1: Accuracy of semi-supervised learning (Semi-SL) algorithms on the Semi-Aves
and Semi-Fungi datasets (see Fig. 4.2) using (i) different pre-trained models, and (ii) in-
class (Uin) and out-of-class (Uin+Uout) unlabeled data. The performances of the supervised
baseline and supervised oracle are also shown. Transfer learning from experts is far more
effective than Semi-SL from scratch, while in the transfer setting Semi-SL provides modest
gains. Though out-of-class data (Uout) is valuable when training from scratch, it is not the
case when training from experts (details in Tab. 4.3 and 4.4).

• Picking the right expert provides further gains in this few-shot setting but not when

training using the entire labeled dataset (oracle performance in Fig. 4.1).

• When training with experts, FixMatch gives the most improvements when having Uin

only. However, the presence of out-of-class unlabeled data often hurts performance.

Self-Training was the most robust to the presence of out-of-class data (Tab. 4.3, 4.4 and

Fig. 4.4).

• Surprisingly, we found that no method was able to reliably use out-of-class data even

though the domain shift is relatively small (the orange group is not higher than the blue

groups for ImageNet and iNat unlike scratch in Fig. 4.1), echoing the experience of

participants in the FGVC7 challenge [154].
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Figure 4.2: The proposed benchmark for semi-supervised learning. The benchmark
contains two datasets, with classes from the Aves and Fungi taxa respectively. Each rep-
resents a 200-way classification task and the training set contains (i) labeled images from
these classes Lin, (ii) unlabeled images from these classes Uin, and (iii) unlabeled images
from related classes Uout, as seen on figures to the right. Moreover, the classes exhibit a
long-tailed distribution with an imbalance ratio of 8 to 10. The benchmark captures condi-
tions observed in some realistic applications that are not present in existing datasets used
to evaluate semi-supervised learning. See § 4.1 and Tab. 4.1 for details.

• The performance of Semi-SL is far below the model trained using labels of the entire in-

class data suggesting that there is significant room for improvement (oracle performance

in Fig. 4.1).

In summary, we conduct a systematic evaluation of several recently proposed Semi-

SL techniques on two challenging datasets representing a long-tailed distribution of fine-

grained categories. We vary the initialization and the domain of the unlabeled data and an-

alyze the robustness of various Semi-SL approaches. Our experiments indicate that Semi-

SL does not work out-of-the-box in a transfer learning setting, especially in the presence

of out-of-domain data. These results are in a similar vein to prior work on the evalu-

ation of Semi-SL approaches that have analyzed the robustness of Semi-SL techniques

to the choice of hyper-parameters [115], network architectures [26, 182], and domain

shifts [115, 156, 172], etc. However, the evaluation in a transfer learning setting on the

proposed benchmarks reveals additional insights. We hope these experiments inspire prac-

52



Dataset
Classes Images Unlabeled Image Class Imba.

Lin / Uin / Uout Lin / Uin / Uout Class Domain Res. Distri. Ratio

CIFAR-10 10 / 10 / 0 4K / 40K / 0 L = U 32×32 uniform 1
CIFAR-100 100 / 100 / 0 10K / 50K / 0 L = U 32×32 uniform 1

SVHN 10 / 10 / 0 1K / 65K / 0 L = U 32×32 uniform 1
STL-10 10 / 0 / - 5K / 0 / 100K L 6= U 96×96 uniform 1

ImageNet 1000 / 1000 / 0 140K / 1.26M / 0 L = U 224×224 ≈ uniform 1.8
Semi-Aves 200 / 200 / 800 6K / 27K / 122K L = Uin 6= Uout 224×224 long-tailed 7.9
Semi-Fungi 200 / 200 / 1194 4K / 13K / 65K L = Uin 6= Uout 224×224 long-tailed 10.1
Semi-iNat 810 / (2439) 9K / (313K) L 6= (Uin ∪ Uout) 224×224 long-tailed 12.9

Table 4.1: A comparison of Semi-Aves, Semi-Fungi, and Semi-iNat datasets with existing
Semi-SL benchmarks. Semi-Aves, Semi-Fungi, and Semi-iNat present a challenge due
to the large number of classes, presence of novel images in the unlabeled set, long-tailed
distribution of classes as indicated by the class imbalance ratio (maximum / minimum
images per class) in the training set.

tical methods that combine the benefits of supervised learning and task-specific learning on

partially labeled datasets.

4.1 A Realistic Benchmark

In Semi-SL, we are provided with labeled training data (xi, yi) ∈ Lin and unlabeled

training data (ui, ·) ∈ U . The unlabeled data can either belong to the same classes as the

labeled data (Uin), or to novel classes (Uout). In a realistic setting, one may expect that the

unlabeled data contains novel classes. In many applications it is easy to acquire images

from related domains through coarse labeling, e.g., it is easier to label an image as a bird

than a “yellow bunting”. Such images could be potentially used to learn better represen-

tations. Thus we evaluate Semi-SL methods in two settings, one when the unlabeled data

contains no novel images, and another when it does, i.e., Uin and Uin + Uout respectively.

We use two datasets by sampling classes from the natural domains for our benchmark.

As shown in Fig. 4.2, the classes belong to the Aves and Fungi taxonomy and contain a

long-tailed distribution of classes, as commonly observed in fine-grained domains. Tab. 4.1
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shows a comparison with other benchmarks. Larger image sizes, significant class imbal-

ance, fine-grained categories, and a large number of out-of-class images allow a more real-

istic evaluation of Semi-SL techniques. Below we describe each dataset.

4.1.1 Semi-Aves

We use the dataset from the semi-supervised challenge at the FGVC7 workshop at

CVPR 2020 [154]. The dataset includes a subset of bird species from the Aves kingdom of

iNaturalist 2018 dataset [167]. However, there are no overlapping images since the images

were collected from recent years. There are 200 in-class and 800 out-of-class categories.

The training and validation set has a total of 5959 labeled images, 26,640 and 122,208 in-

class and out-of-class unlabeled images, and 8000 test images. The training data in Lin,

Uin, and Uout is long-tail distributed, specifically Lin has 15 to 53 images and Uin has 16 to

229 images per class. The test data has a uniform distribution with 40 images per class.

4.1.2 Semi-Fungi

We create a Semi-Fungi dataset following the similar strategy of the Semi-Aves dataset.

We use the train-val set of images from the FGVCx Fungi challenge at the FGVC5 work-

shop at CVPR 2018 [48]. The dataset was collected from the “Svampe Atlas”1 website,

thus the image domain is different from iNaturalist. The original dataset has 1394 fungi

species with a long-tailed distribution. We first sort the classes by frequency and randomly

select 200 of the top 600 classes as in-class categories. We then select 20 images per class

as the test set, and randomly select 4141 images as labeled data and the rest 13,166 images

as in-class unlabeled data. The rest 1194 species are used as out-of-class unlabeled images,

which has a total of 64,871 images. In Semi-Fungi, there are 6 to 78 images per class in

Lin, and 16 to 276 images in Uin. The test set is uniformly distributed with 20 images per

class.

1https://svampe.databasen.org
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Mollusca Chordata Arthropoda Echinodermata

Tracheophyta Bryophyta Basidiomycota Ascomycota

Figure 4.3: Examples from the Semi-iNat dataset. The Semi-iNat dataset includes im-
ages from 8 different phyla.

Kingdom Phylum Cin Cout

Animalia
(1294)

Mollusca 11 24
Chordata 113 228

Arthropoda 301 605
Echinodermata 4 8

Plantae Tracheophyta 336 674
(1028) Bryophyta 6 12

Fungi Basidiomycota 29 58
(117) Ascomycota 10 20

Table 4.2: The number of species in the taxonomy. For each phylum, we select around
one-third of the species for the in-class set Cin and the rest for the out-of-class set Cout.

4.1.3 Semi-iNat

Last, we use the dataset from the semi-supervised challenge at the FGVC8 workshop

at CVPR 2021 [155]. Semi-iNat builds on the Semi-Aves while incorporating some new

challenges. First, the dataset contains species from three kingdoms: Animal, Plants, and

Fungi (Fig. 4.3 and Tab. 4.2), unlike Semi-Aves which contains only Aves (birds). There are
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a total of 2439 animal species and≈330k images, which is more than two times larger than

Semi-Aves. In addition, the domain labels are not provided for the challenge. We acquire

them only for our analysis. Last, coarse taxonomy labels for unlabeled data are provided,

which are easily obtained from non-experts and provide a weak supervisory signal that

could be exploited by the learning methods.

4.2 Methods

In this section, we describe the details of the Semi-SL methods we compared in our

benchmark.

(1) Supervised baseline / oracle: We train the model only using labeled data Lin with a

cross-entropy loss. For the oracle, we include the ground-truth labels of Uin for training.

(2) Pseudo-Labeling [97]: The approach uses a base model’s confident predictions on

unlabeled images as labels. Concretely, if the maximum probability of a class is greater

than a threshold τ , we then take the class as the target label. Following the implementation

of Oliver et al. [115], we sample half of the batch from Lin and half from unlabeled data U

during training. Denote (xi, yi) as a labeled sample, the predictions on unlabeled data ui of

the model f as qi = f(ui), pseudo-label as q̂i = argmax(qi), and cross-entropy function as

H(p, q) = −∑r p(r) log q(r). Then, the objective for each batch is:

L =
n∑
j=1

H(yj, f(xj)) +
n∑
i=1

1
[
max(qi) ≥ τ

]
H(q̂i, qi). (4.1)

(3) Curriculum Pseudo-Labeling [22]: Unlike pseudo-labeling where labels are gener-

ated in an online manner, curriculum labeling generates pseudo-labels after the training is

finished on the current labeled set before retraining. We first train a supervised model on

labeled data Lin, then select images with the highest predictions from all the unlabeled data

u ∈ U , and add them with their pseudo-labels to the labeled dataset. In the next iteration,
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we retrain a model from scratch using the new set of labeled data. We repeat this process

5 times and select {20, 40, 60, 80, 100}% of the unlabeled data from the original pool of

unlabeled data U . The steps are as the following:

(i) Initialize L = Lin, β = 20.

(ii) Supervised training on L .

(iii) Generate predictions q = fθ(x) for every u ∈ U .

(iv) From U select β% examples with highest prediction scores and their pseudo-labels as

Ltop.

(v) Add selected unlabeled data with their pseudo-labels to the labeled dataset L = Lin∪

Ltop.

(vi) If β <100, β = β+20 and repeat from step (ii) .

(4) FixMatch [148]: FixMatch combines pseudo-labeling and consistency regularization.

For each unlabeled image, it minimizes the cross-entropy between the pseudo-label (thresh-

olded prediction) of the weakly-augmented image and the predictions of the strong-augmented

image. For labeled data, only weak augmentations are applied. Specifically, let α be a

weak augmentation (image flipping in our case) and A be a strong augmentation (Ran-

dAugment [33] in our case). Let the predictions under strong and weak augmentations are

Qi = f(A(ui)), qi = f(α(ui)). The total loss for labeled and unlabeled data is

L =
m∑
j=1

H(yj, f(α(xj))) +
km∑
i=1

1
[
max(qi) ≥ τ

]
H(q̂i, Qi). (4.2)

In the original implementation, each batch uses m labeled and km unlabeled data with a

total batch size n = (k + 1)m, where the sampling ratio k is a hyper-parameter.

(5) Self-Training: While the term of “Self-Training” is general, we use this to refer to

the following procedure using distillation [72]. We first train a supervised model f t on the
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labeled data which we call the teacher model, then train a student model f s with scaled

cross-entropy loss on the unlabeled data and cross-entropy loss on labeled data. Distilla-

tion was originally used for model compression [18], but has been shown to improve the

performance when training the student model with the same architecture [49] or across

different modalities [161, 61, 153]. Given unlabeled data (u, ·), let the logits from teacher

and student model as zt and zs, and the prediction of labeled data (x, y) from the student

model is ys. The objective includes the cross-entropy loss for labeled data (x, y), and the

distillation loss for unlabeled data:

L = (1− λ)
n∑
j=1

H(yj, y
s
j ) + λ

n∑
i=1

H

(
σ

(
zti
T

)
, σ

(
zsi
T

))
, (4.3)

where λ is the weight between supervised and distillation losses, σ is the softmax function,

and T is a temperature (scaling) parameter.

(6) Self-Supervised Learning (MoCo [66]): We use momentum contrastive (MoCo) learn-

ing as a strong baseline for self-supervised training. MoCo learns an image encoder f(x)

that maps the image x to a representation q = f(x) and uses a contrastive objective that

requires positive pairs to be closer than negative pairs in the representation space. The

positive pairs are sampled from two geometric or photometric augmented views of a same

images while negative images are augmentations from different images. MoCo adapts the

InfoNCE [116] loss as the objective function. The loss for each encoded query q is:

Lq = − log
exp (q · k+/T )

exp(q · k+/T ) +∑K
i exp(q · k−i /T )

, (4.4)

where T is the temperature, k+ and k− are the positive and negative sample of the query q.

The number of negative samples K is limited by the mini-batch size. In order to stabilize

the training, MoCo uses the memory bank [181] to store the negative samples and updates

the encoder of the keys in the memory bank based on momentum. After the self-supervised
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pre-training, we remove the MLP layers after the global average pooling layer, add a linear

classifier (a fully convolutional layer followed by softmax), and train the entire network

with supervised cross-entropy loss. We found that freezing the pre-trained backbone gives

worse performance than fine-tuning the entire network.

(7) MoCo + Self-Training: Here we initialize the model using MoCo learning on the

unlabeled data before semi-supervised learning using Self-Training. A recent work by

Chen et al. [26] has shown this to be a strong semi-supervised learning baseline. The

procedure is as follows:

(i) Pre-train the model using MoCo on Lin and U .

(ii) Fine-tune the model on Lin with a cross-entropy loss. Call this the teacher model f t.

(iii) Train a student model f s initialized from step (i) with distillation loss (Eq. 4.3) using

the teacher model f t.

4.3 Experiments

4.3.1 Implementation details

Network architecture and pre-training. For a fair comparison, we use a ResNet-50

network [70] on 224×224 images for all our experiments. For transfer learning, we use

pre-trained models on ImageNet [134] and iNaturalist 2018 (iNat) [167] dataset, which

contains 8142 species including 1248 Aves and 321 Fungi species. Note that there are no

overlapping images between iNat’s training set and Semi-Aves, though there are overlap-

ping categories. The images for Semi-Fungi images do not overlap with iNaturalist, but

we do not know how many overlapping classes there are as species names were not pro-

vided in the original dataset [48] from which it was constructed. However, this is less of

a concern as we find that iNat pre-trained model performs worse than an ImageNet pre-

trained model on Semi-Fungi, suggesting the class overlap is likely small if any. To obtain

an iNat pre-trained model, we train the model using SGD with momentum with a learning
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Method
from scratch from ImageNet from iNat

Top1 Top5 Top1 Top5 Top1 Top5

Supervised baseline 20.6±0.4 41.7±0.7 52.7±0.2 78.1±0.1 65.4±0.4 86.6±0.2
Supervised oracle 57.4±0.3 79.2±0.1 68.5±1.4 88.5±0.4 69.9±0.5 89.8±0.7

U
in

Pseudo-Label [97] 16.7±0.2 36.5±0.8 54.4±0.3 78.8±0.3 65.8±0.2 86.5±0.2
Curriculum Pseudo-Label [22] 20.5±0.5 41.7±0.5 53.4±0.8 78.3±0.5 69.1±0.3 87.8±0.1

FixMatch [148] 28.1±0.1 51.8±0.6 57.4±0.8 78.5±0.5 70.2±0.6 87.0±0.1
Self-Training 22.4±0.4 44.1±0.1 55.5±0.1 79.8±0.1 67.7±0.2 87.5±0.2
MoCo [66] 28.2±0.3 53.0±0.1 52.7±0.1 78.7±0.2 68.6±0.1 87.7±0.1

MoCo + Self-Training 31.9±0.1 56.8±0.1 55.9±0.2 80.3±0.1 70.1±0.2 88.1±0.1

U
in

+
U
o
u
t

Pseudo-Label [97] 12.2±0.8 31.9±1.6 52.8±0.5 77.8±0.1 66.3±0.3 86.4±0.2
Curriculum Pseudo-Label [22] 20.2±0.5 41.0±0.9 52.8±0.5 77.8±0.1 69.1±0.1 87.6±0.1

FixMatch [148] 19.2±0.2 42.6±0.6 49.7±0.2 72.8±0.5 64.2±0.2 84.5±0.1
Self-Training 22.0±0.5 43.3±0.2 55.5±0.3 79.7±0.2 67.6±0.2 87.6±0.1
MoCo [66] 38.9±0.4 65.4±0.3 51.5±0.4 77.9±0.2 67.6±0.1 87.3±0.2

MoCo + Self-Training 41.2±0.2 65.9±0.3 53.9±0.2 79.4±0.3 68.4±0.2 87.6±0.2

Table 4.3: Results on Semi-Aves benchmark. We experiment with six different Semi-SL
methods as well as supervised baselines under different settings: (1) using Uin or Uin+Uout
as the unlabeled dataset, (2) training from scratch, or using ImageNet or iNat pre-trained
model. We show that when training from scratch with Uin, MoCo + Self-Training performs
the best. When having expert models, transfer learning is a strong baseline, and FixMatch
and Self-Training can still give improvements. When adding unlabeled data from Uout, the
performance pales except for the self-supervised method when training from scratch. The
best results and those within the variance are marked in teal.
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Method
from scratch from ImageNet from iNat

Top1 Top5 Top1 Top5 Top1 Top5

Supervised baseline 31.0±0.4 54.7±0.8 53.8±0.4 80.0±0.4 52.4±0.6 79.5±0.5
Supervised oracle 60.2±0.8 83.3±0.9 73.3±0.1 92.5±0.3 73.8±0.3 92.4±0.3

U
in

Pseudo-Label [97] 19.4±0.4 43.2±1.5 51.5±1.2 81.2±0.2 49.5±0.4 78.5±0.2
Curriculum Pseudo-Label [22] 31.4±0.6 55.0±0.6 53.7±0.2 80.2±0.1 53.3±0.5 80.0±0.5

FixMatch [148] 32.2±1.0 57.0±1.2 56.3±0.5 80.4±0.5 58.7±0.7 81.7±0.2
Self-Training 32.7±0.2 56.9±0.2 56.9±0.3 81.7±0.2 55.7±0.3 82.3±0.2
MoCo [66] 33.6±0.2 59.4±0.3 55.2±0.2 82.9±0.2 52.5±0.4 79.5±0.2

MoCo + Self-Training 39.4±0.3 64.4±0.5 58.2±0.5 84.4±0.2 55.2±0.5 82.9±0.2

U
in

+
U
o
u
t

Pseudo-Label [97] 15.2±1.0 40.6±1.2 52.4±0.2 80.4±0.5 49.9±0.2 78.5±0.3
Curriculum Pseudo-Label [22] 30.8±0.1 54.4±0.3 54.2±0.2 79.9±0.2 53.6±0.3 79.9±0.2

FixMatch [148] 25.2±0.3 50.2±0.8 51.2±0.6 77.6±0.3 53.1±0.8 79.9±0.1
Self-Training 32.5±0.5 56.3±0.3 55.7±0.3 81.0±0.2 55.2±0.2 82.0±0.3
MoCo [66] 44.6±0.4 72.6±0.5 52.9±0.3 81.2±0.1 51.0±0.2 78.5±0.3

MoCo + Self-Training 48.6±0.3 74.7±0.2 55.9±0.1 82.9±0.2 54.0±0.2 81.3±0.3

Table 4.4: Results on Semi-Fungi benchmark. We experiment on Semi-Fungi using the
same hyper-parameters from Semi-Aves in Table 4.3. We can see similar conclusions:
When training from scratch, MoCo + Self-Training performs the best and adding Uout can
give an extra performance boost. With expert models, FixMatch and Self-Training (with
or without MoCo) is often the best performing one, but the latter is more robust to the
out-of-class data.

61



Method
from scratch from ImageNet from iNat

Top1 Top1 Top1

Supervised baseline 18.5 40.4 47.7
Supervised oracle 93.3 94.3 94.2

U
in

Pseudo-Label [97] 18.6 40.3 54.1
Curriculum Pseudo-Label [22] 19.0 40.2 52.1

FixMatch [148] 15.5 44.1 59.8
Self-Training 20.3 42.4 50.4
MoCo [66] 30.2 41.7 51.4

MoCo + Self-Training 32.0 42.6 52.7

U
in

+
U
o
u
t

Pseudo-Label [97] 18.8 40.3 51.5
Curriculum Pseudo-Label [22] 20.0 40.5 52.0

FixMatch [148] 11.0 38.5 53.3
Self-Training 19.7 41.5 49.3
MoCo [66] 31.8 40.8 51.0

MoCo + Self-Training 32.9 41.5 52.4

Table 4.5: Results on Semi-iNat benchmark. We experiment on Semi-iNat which is
a larger dataset than Semi-Aves and Semi-Fungi. In this table, the validation set is for
selecting best models during training, but not incorporated in the supervised loss. The
conclusions are similar as Semi-Aves. When training from scratch, MoCo + Self-Training
is the best. When initialized using expert models, FixMatch works the best when having
in-class unlabeled data only, but Self-Training is more robust to out-of-class data.
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rate of 0.0045 and a batch size of 64 for 75 epochs which matches the reported 60% Top-1

accuracy2. We use the ImageNet pre-trained model from torchvision [118].

Data augmentation. For the Semi-Fungi dataset, we first pre-process the images to

have a maximum of 300 pixels for each side, while Semi-Aves has a maximum of 500

pixels and Semi-iNat has a maximum of 300 pixels. We use random-resize-crop to the

size of 224×224 and random-flipping for data augmentation, for all the methods except for

MoCo and FixMatch. MoCo additionally uses Gaussian blur, color jittering, and random

grayscale conversion, while FixMatch uses RandAugment [33].

Hyperparameter search. We found the Semi-SL methods to be sensitive to hyper-

parameters such as learning rates, weight decay, etc. As noted in [115], a small validation

set poses a risk of picking sub-optimal hyper-parameters. Moreover, labeled data is best

used as a source of supervision. While k-fold cross-validation is an alternative, it is expen-

sive. Hence, we use the combined training and validation set for training Semi-SL methods

in our experiments and report performance on the test set which is sufficiently large. In par-

ticular, hyperparameters for all methods were based on the performance on the Semi-Aves

dataset and kept fixed for the Semi-Fungi dataset (Tab. 4.4). Thus the results in Tab. 4.3

should be seen as a validation set performance, while those in Tab. 4.4 represent a novel

test set. However, the high-level conclusions are identical across the two benchmarks.

Semi-supervised training. For Semi-SL methods except for FixMatch, we use SGD

with a momentum of 0.9 and a cosine learning rate decay schedule [103] following [89,

148] for optimization. Learning rate and weight decay were picked from a range of [0.03,

0.0001]. We use a batch size of 64 during training. When there is unlabeled data, we select

half of the batch from labeled and another half from unlabeled data (32 each). We train

models for 10k and 50k iterations for training from expert models and from scratch. Other

hyper-parameters include threshold τ for Pseudo-Labeling, which we select from {0.80,

2https://github.com/macaodha/inat_comp_2018
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0.85, 0.90, 0.95}. When training from scratch, we use τ=0.85 and 0.8 for with and without

Uout; when training from experts we use τ=0.95. For Self-Training, we set T=1 and λ=0.7

for all the experiments. For FixMatch [148], we are able to train the model up to a batch

size of 192 (32 labeled and 160 unlabeled images) on 4 GPUs. We find the performance

drops significantly with small batch size (e.g. 48), however, we are unable to use the same

batch size as original paper (i.e. 6144) due to limited resources. We use a learning rate of

0.01 and threshold τ=0.80 to train FixMatch for 500 epochs when training from scratch

and 250 epochs with pre-trained models.

Self-supervised training. We adopt the default settings of MoCo-v2 [28], including

MLP projector, 800 training epochs, etc., but adapt the number of negative samples and

learning rate to our task. We use a batch size of 256 and 2048 negative samples in all

experiments. We find that using a large number of negative samples (e.g. 65,536) hurts

the performance. When training the MoCo from scratch, we use the default learning rate

of 0.03; when training MoCo from ImageNet or iNaturalist pre-trained model, we use

a smaller learning rate (0.0003) and fewer training epochs (200) to avoid the potential

forgetting problem. In the end, we train a classifier on the global average pooling features

of ResNet-50 without freezing the backbone. We find that freezing the feature encoder

always leads to worse performance than fine-tuning the entire network.

4.3.2 Results

Our experimental results on Semi-Aves, Semi-Fungi, and Semi-iNat are shown in Tab. 4.3,

4.4 and 4.5, respectively. To better visualize the results, we plot the relative gain of each

Semi-SL method, i.e. the differences between supervised baseline in raw accuracy, on

Semi-Aves and Semi-Fungi in Fig. 4.4. We discuss the results of each setting in the follow-

ing.
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Figure 4.4: Relative gains of Semi-SL methods on Semi-Aves and Semi-Fungi. Left:
trained from scratch. Right: using expert models. For each Semi-SL method, we plot the
relative gain, i.e. the difference between the supervised baseline in raw accuracy, from the
results in both Tab. 4.3 and 4.4. This shows that (1) the presence of out-of-class data Uout
often hurts the performance, and (2) Self-Training is often the best method when using
pre-trained models.

4.3.2.1 Training from scratch.

We first discuss the results of training from scratch using only Uin on both datasets.

Comparing to supervised baseline, Curriculum Pseudo-Label does not give improvements

and Pseudo-Label even underperforms the baseline. This is possibly due to the low ini-

tial accuracy of the model which gets amplified during pseudo labeling. FixMatch and

Self-Training both result in improvements. Self-supervised learning (MoCo) gives a good

initialization and the improvements are similar or even more than using FixMatch. Finally,

Self-Training using MoCo pre-trained model as the teacher model results in a further 2-3%

improvement.

4.3.2.2 Using expert models.

We then consider using an ImageNet or iNat pre-trained model for transfer learning

with Uin only. The transfer learning baseline from either expert model outperforms the

best Semi-SL method (MoCo + Self-Training) trained from scratch by a large margin,

showing that transfer learning is more powerful in our realistic datasets. This observation

echos Oliver et al. [115] who showed transferring from ImageNet to CIFAR10 performs
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better than Semi-SL methods. Next, we can see that most of the Semi-SL methods, as

well as MoCo pre-training, provide improvements over the baselines. The only exception

is Pseudo-Label on Semi-Fungi. Among Semi-SL methods, FixMatch and MoCo + Self-

Training perform the best.

4.3.2.3 Effect of out-of-class unlabeled data.

Now we consider the setting where the unlabeled data contains both in-class and out-of-

class data (Uin+Uout). This is the trade-off between more unlabeled data at the cost of a dis-

tribution shift. This effect can be seen in the orange vs. blue plot in Fig. 4.4. When training

from scratch, the performances of Pseudo-Label and FixMatch drop by 4-9%, while Cur-

riculum Pseudo-Label and Self-Training only drop by less than 1%, showing that they are

more robust to the domain shift of unlabeled data. On the other hand, self-supervised pre-

training (MoCo) can benefit significantly from Uout, providing around 11% improvement

over using Uin only on both Aves and Fungi datasets. Combining with Self-Training gives

another 3-6% improvement, making the gap between transfer learning baseline smaller.

Finally, we consider having Uin + Uout with expert models. In Fig. 4.4 we can see

the performance often drops in the presence of Uout. Curriculum Pseudo-Label and Self-

Training are more robust and yield less than 1% decrease in most cases, while FixMatch

is less robust whose performance drops by around 6%. The performances of MoCo also

drops around 1-3% and are sometimes worse than the supervised baseline. Adding Self-

Training however provides a 1-3% boost in performance. Overall, Self-Training from either

a supervised or a self-supervised model is the most robust one.

4.3.2.4 Robustness to hyper-parameters and trends.

We found Pseudo-Label to be sensitive to the threshold τ . When using experts higher

thresholds worked better. Increasing the threshold also increased the robustness in the pres-

ence of novel classes. Curriculum Pseudo-Label was found to be more robust in our bench-

mark, even when adding Uout. Self-Training was the most robust to hyper-parameters, we
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chose the same temperature T and weight λ for all the experiments and it consistently

improved results regardless of using an expert model or using out-of-domain data.

4.3.3 Comparison with related prior work on Semi-SL analysis

On out-of-class unlabeled data. Oliver et al. [115] showed that out-of-class unlabeled

data negatively impacts performance, but analysis was done on CIFAR-10 with images

from 6 labeled and 4 unlabeled classes. The classes are quite different making the problem

of selecting in-domain images relatively easy in comparison to fine-grained domains —

in our benchmarks the out-of-class data Uout are other species of birds or fungi. In fact,

we show that more out-of-class data helps when using self-supervised and self-training

methods trained from scratch. However, the additional data does not seem to help when

initialized with experts.

On transfer learning. Oliver et al. showed a transfer learning accuracy of 87.9%

on CIFAR-10 with 4k labels, outperforming many Semi-SL methods including PL [97]

and VAT+EM [109]. Although recent results are better, the low resolution of CIFAR-10

(32×32 pixels) makes transfer learning from ImageNet less effective. On STL-10 that has

a higher resolution (96×96 pixels), fine-tuning a ImageNet pre-trained ResNet-50 model

on 5k labels provides 97.2% accuracy, while that trained on iNaturalist provides 95.0%

accuracy. This beats 94.8% of FixMatch using 5k labeled examples when trained from

scratch. Note that the iNaturalist dataset has no overlap with STL-10, yet transfer learning

is effective.

4.3.4 Analysis on out-of-class unlabeled data

The effect of threshold parameter for Pseudo-Label. We found Pseudo-Label method

is sensitive to the threshold parameter τ . Fig. 4.5 plots the accuracy as a function of τ with

different unlabeled data and experts on Semi-Aves. A higher threshold performs better, es-

pecially in the presence of out-of-class data Uout as this excludes novel class images where

the confidence of prediction is likely to be low. On the other hand, lower values work
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Figure 4.6: Predictions of unlabeled data using a supervised model. We plot the dis-
tribution of the predictions of data from Uin and Uout. Specifically, we plot the maximum
probability of the class predictions (left), entropy of the predictions (middle), and the dis-
tillation loss between the teacher and student model before the training starts (right). Unla-
beled data from the same distribution tend to have a higher maximum probability, a lower
entropy, or a higher distillation loss.

just as well when unlabeled data is in-domain Uin. However, this scheme only appears to

work when using strong experts (e.g., iNat) whose confidence is likely calibrated, unlike

random or ImageNet pre-trained model, where the presence of out-of-class data reduces
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performance. This poses a practical problem for this method — increasing the threshold

increases robustness but reduces the amount of unlabeled data that is used during training.

The effect of out-of-class unlabeled data. To see how the domain mismatch between

Uin and Uout can affect Semi-SL methods, we analyze the predictions of the unlabeled data.

We use the supervised model trained on Lin to compute the predictions of the unlabeled

data on the Semi-Aves dataset. We plot the histogram of the maximum probability and

the entropy of the predictions of Uin and Uout in Fig. 4.6 (left and middle). We also plot

the distribution of the distillation loss, which is calculated between the supervised model

(teacher) and the ImageNet pre-trained model (student), with a temperature T = 1 (Fig. 4.6

right). This is in the beginning of the self-training process and the last layer of the student

model is randomly initialized. Overall, the model is generally more uncertain about the

out-of-class data, which often has a higher entropy or a smaller maximum probability. The

distillation loss on Uin is also often higher than that of Uout, suggesting the model focuses

more on those from Uin during training. However, there is still a good amount of data from

Uout having a high maximum probability, which has a negative impact for pseudo-label

methods.
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CHAPTER 5

SEMI-SUPERVISED LEARNING WITH TAXONOMIC LABELS

In the previous chapter, we have shown that the performances of Semi-SL methods

are still far below that of fully supervised training on Semi-Aves and Semi-iNat datasets.

However, the label space of those datasets (biological taxonomy) is well-structured. In

addition, one can obtain labels on the higher levels of the taxonomy at a lower cost. In

this chapter, we investigate if those coarse labels can be incorporated in semi-supervised

learning. In particular, can hierarchical labels improve the state-of-the-art semi-supervised

learning algorithms?

We present an analysis on the Semi-iNat dataset [155], which was described in Chap-

ter 4.1.3. Semi-iNat consists of images from 810 species, spanning three kingdoms and

eight phyla. The dataset contains (1) a small set of images labeled at the species level, (2)

a large set (9×) of coarsely-labeled images from the same species, and (3) an even larger

set (32×) of coarsely-labeled images from the novel species within the same taxonomy.

At test time, species classification accuracy is measured on novel images from the set of

species within the labeled set. The dataset is fine-grained and naturally long-tailed posing

challenges to existing approaches for semi-supervised learning.

We present results using a ResNet-50 network trained from scratch or on the ImageNet

dataset using various semi- and self-supervised learning approaches. For supervised learn-

ing baseline with ImageNet pretraining, our experiments show that simply incorporating a

hierarchical loss using the labels at the phylum level consisting of eight categories improves

the top-1 species level classification accuracy from 40.4% to 46.6% (Table 5.2). This beats

the gains using a state-of-the-art semi-supervised learning approach called FixMatch [148]
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Figure 5.1: Adding supervision on coarse label in the taxonomy improves semi-
supervised learning. Left: The Semi-iNat dataset has labeled data from in-class species
and coarsely labeled data from both in-class and out-of-class species. The coarse labels
include information in the kingdom and phylum levels. Right: Having more fine-grained
labels improves the performance on both supervised baseline and semi-supervised meth-
ods.

which obtains 44.1%. However, the gains are complementary, and combining the two im-

proves the performance further to 47.9%. Coarse taxonomic labels are also useful when

models are trained from scratch, though in this setting self-supervised pretraining is also

effective. We quantify the gains obtained directly using the hierarchical labels and when

incorporating them within FixMatch across various levels of the hierarchy in the dataset

from the Kingdom level (3 categories) to the Species level (810 categories, full supervi-

sion) (Figure 5.1 right).

The presence of out-of-domain data poses a challenge for learning. We find that the

performance of nearly all approaches drops when the larger set of images are included

during semi-supervised learning. For example, the performance of FixMatch drops from

47.9% to 41.1% (Table 5.3). This is problematic because labeling if an image contains one

of the observed species is significantly more challenging, than say, obtaining a large pool

of images with the same coarse labels as the species of interest. We present an approach
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that selects relevant data from the set of coarsely labeled images guided by the hierarchy

that improves the performance to 42.0%.

5.1 Related Works

Semi-supervised learning. Semi-supervised learning broadly aims to use weakly la-

beled data to improve the model generalization. Self-training approaches, proposed in

some early work [106, 139] use the model’s own prediction to generate labels. Their mod-

ern incarnations include pseudo-labeling [97] which uses confident predictions as target

labels for unlabeled data. Such labels can also be added gradually [9, 22] to reduce model

drift. Another approach is to first train the model and then use its predictions to guide

the training of a student model [183, 184, 195, 26] using distillation. Consistency-based

approaches enforce the similarity of predictions between two augmentations of the same

data as a form of supervision [6, 127, 95, 136, 109]. Recent examples of such techniques

include MixMatch [11], ReMixMatch [10], FixMatch [148], and UDA [182], which com-

bine geometric and photometric image augmentations with others such as MixUp [189].

Another line of works incorporates self-supervised learning for unlabeled data with super-

vised objectives. For example, one can combine self-supervised and supervised objectives

to train a model jointly [188, 52, 156], or use self-supervised learning as pre-training [26]

before fine-tuning with labeled data.

Learning with hierarchical labels. The hierarchical structure of the label space can

be used to improve classification performance [133, 159, 60]. A common approach is to

frame the problem as a structured prediction task to incorporate the structure. For example,

Deng et al. [37] exploit the relations in the label spaces to improve classification using a

probabilistic graphical model. Other works predict fine-grained labels by designing models

that predict the labels [185, 194], or concatenating the features [174] learned from different

levels in the hierarchy. The hierarchical label space can also be utilized to predict the label

of the novel classes. For example, given coarse labels, Hsieh et al. [74] learn to assign fine-
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grained pseudo-labels by meta-learning, assuming that the classifier can achieve the best

performance when the missing labels are correctly recovered. Another application is zero-

shot learning where attributes of the novel classes are provided, but there are no training

images in novel classes. One can use graph convolution networks [137] or add novel nodes

in the taxonomy tree [98] to leverage the hierarchical label space. Recently, coarse labels

have also been incorporated in contrastive learning to improve image retrieval [164] and

few-shot learning [19]. Unlike prior work, we investigate if hierarchical labels can be used

in the context of semi-supervised learning, in particular to constrain the label space of

techniques such as FixMatch or Pseudo-Labeling.

5.2 Method

Notation and problem setting. We focus on the structured prediction task where the

label space y ∈ Y has a hierarchical structure. It corresponds to a tree-structured biological

taxonomy with 7 levels corresponding to the kingdom, phylum, class, order, family, genus,

and species. Denote yl as the label of an instance at the level l. Thus, y1 is the label

at the kingdom level, y2 for the label in the phylum level, and the leaf nodes in the tree

correspond to species-level labels denoted by y7. Similarly, denote the sets of label space

at a level l as Cl. For example, the label space in the species level is y7 ∈ C7, and in the

phylum level y2 ∈ C2. Given the label in a level, we can infer the labels in all the upper

levels using the tree structure, e.g., we can infer kingdom label given the phylum label, etc.

The Semi-iNat [155] dataset provides species-level labels for a subset of images, but coarse

labels (e.g., kingdom and phylum) for a larger set of images (Table 5.1). Performance is

measured as the accuracy at the species level on novel images.

5.2.1 Hierarchical supervised loss

We consider the supervised cross-entropy loss in each level of the hierarchy. For labeled

data (xi, y
7
i ) ∈ L, the model f first predicts the label space of the species C7 with the
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probabilities p7i = f(xi). To use coarse labeled data, say at the phylum level (uj, y2j ) ∈ U

we apply a cross-entropy loss over the model’s prediction at the phylum level obtained by

summing the probabilities of all the leaf nodes under each phylum. The marginalization

can be done by p2i = p7i ·W 2
7 , where the predefined matrixW 2

7 represents the edges between

the species and phylum level (the elements are 1 for the edges and 0 otherwise).

During training, we sample m labeled data and n coarsely labeled data in each batch

for stochastic gradient descent. For labeled data, we can add supervised loss on all seven

levels of the taxonomy. However, labels on the species level have strictly more supervision

than on the other levels above, and empirically we also find that adding additional losses

on higher levels does not help. Hence, we only add supervised loss on the lowest level

possible. The complete hierarchical supervised loss is:

L7,2
hie =

m∑
i=1

H(y7i , p
7
i ) +

n∑
j=1

H(y2j , q
2
j ), (5.1)

where H is the cross-entropy function H(u, v) = −∑w u(w) log v(w). The first term is

the loss for labeled data on the species level, and the second term is the loss for coarsely

labeled data on the phylum level. The superscript s, p on the lossL7,2
hie represents the level of

supervision for labeled and coarsely labeled data. In the ablation studies, we will investigate

the effect of different levels of supervision. Note that our method can be extended to general

hierarchical graphs such as WordNet using marginalization methods [37, 137].

5.2.2 Joint training with semi-supervised loss

In addition to the hierarchical loss, we can add semi-supervised losses such as con-

sistency regularization, entropy minimization, or pseudo-labeling on the species level for

coarsely labeled data. We select representative semi-supervised methods including pseudo-

label, FixMatch, Self-Training with distillation, and self-supervised training (MoCo) with

distillation. We describe each method and how we incorporate hierarchical supervisions in

the following.
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(1) Pseudo-Label [97]. Pseudo-label uses the model’s predictions as labels if the predic-

tion is higher than a threshold τ . Denote the pseudo-label in the species level as q̂7i =

argmax(q7i ), then the loss for pseudo-label training is:

L = L7,2
hie +

n∑
j=1

1
[
max(ri) ≥ τ

]
H(q̂7i , q

7
i ). (5.2)

(2) FixMatch [148]. FixMatch utilized two different augmentation functions for con-

sistency training, one with weak augmentation α(·) and one with strong augmentation

A(·). For each coarsely labeled image uj , the KL distance between the pseudo-label from

weakly-augmented image qj = f(α(uj)) and the prediction of strongly-augmented image

Qj = f(A(uj)) is minimized. To compute the supervised loss for labeled data, weak aug-

mentation pi = f(α(xi)) is used. For unlabeled data, since the weakly-augmented data is

only used for generating the pseudo-label without back-propagation, we add the supervised

loss on strongly-augmented images Qj = f(A(uj)). The final loss is:

L =
m∑
i=1

H(y7i , p
7
i ) +

n∑
j=1

H(y2j , Q
2
j)︸ ︷︷ ︸

L7,2hie

+
n∑
j=1

1
[
max(q7i ) ≥ τ

]
H(q̂7i , Q

7
i ). (5.3)

(3) Self-Training. We use distillation [72] as the self-training method. Specifically, we

first train a teacher model using labeled data for supervised learning L =
∑m

i=1H(y7i , p
7
i ).

We then train a student model using distillation loss, which is the KL distance between the

logits from the teacher and student models (denoted as zt and zs). The final loss is:

L = L7,2
hie +

n∑
i=1

H

(
σ

(
zti
T

)
, σ

(
zsi
T

))
, (5.4)

where σ(·) is the softmax function and T is the temperature parameter.

(4) Self-Supervised Learning (MoCo) [66]. We use Momentum Contrastive (MoCo) [66]

for self-supervised learning on the union of labeled and coarsely labeled dataL∪U . Specif-
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ically, MoCo uses contrastive learning to minimize the representations of two different aug-

mentations of an image. Denote q = f(x) as the representation of an image x and k+ as the

positive sample, which is another augmentation of the same image x. The negative samples

k−i are sampled from a memory bank. The InfoNCE [116] loss for the query q is:

Lq = − log
exp (q · k+/T )

exp(q · k+/T ) +∑K
i exp(q · k−i /T )

, (5.5)

where T is a temperature hyper-parameter. The encoder for the memory bank is updated

based on momentum of the encoder f(·) to stabilize the training. After the self-supervised

pre-training is finished, we replace the MLP layers (after global pooling) with a linear pro-

jection layer and fine-tune the entire model using our supervised hierarchical loss (eq. 5.1).

(5) MoCo + Self-Training. This method combines the previous two methods, which is

similar to the setting of Chen et al. [26]. We let the MoCo pre-trained model followed by

supervised fine-tuning as the teacher model, then use the distillation to self-train a student

model using the same loss in eq. 5.4.

5.3 Experiments

5.3.1 Experimental settings

Dataset. We use the Semi-iNat dataset [155] from the semi-supervised challenge at

the FGVC8 workshop. The dataset has 810 in-class species and 1629 out-of-class species

from 3 different kingdoms. The labeled data are from in-class species while the coarsely

labeled data are drawn from in- and out-of-class species. Table 5.1 shows the statistics

of the dataset, and Figure 5.1 left shows an example of the taxonomy. The competition

version of the dataset provided the full taxonomies of the species-level data, while only

coarse labels (kingdom and phylum level) are provided for the majority of the remaining

data. However, we acquired species-level labels for all the images in the dataset from the
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Kingdom Phylum Cin Cout

Animalia
(1294)

Mollusca 11 24
Chordata 113 228

Arthropoda 301 605
Echinodermata 4 8

Plantae Tracheophyta 336 674
(1028) Bryophyta 6 12

Fungi Basidiomycota 29 58
(117) Ascomycota 10 20

Total #Classes 810 2439

Taxonomy #Classes in Cin

Kingdom 3
Phylum 8
Class 29
Order 123
Family 339
Genus 729

Species 810

Table 5.1: Statistics of the Semi-iNat dataset [155]. Left: Number of classes under each
kingdom and phylum. The species of Semi-iNat come from 3 kingdoms and 8 phyla. In
each phylum, one-third of the species are used for in-class species Cin and the rest are used
for out-of-class species Cout. Right: Number of classes in each level of the taxonomy.

competition organizers for a more detailed analysis of the utility of supervision at different

levels in the hierarchy.

Training details. We use ResNet-50 [70] as our backbone model and an input size

of 224×224 for all the experiments. For all the methods except for MoCo and FixMatch,

we use SGD with a momentum of 0.9 to train the model with 100k (from scratch) or 50k

iterations (from expert models). The batch size is 60 for training supervised baselines. For

semi-supervised methods, we sample 30 images each from labeled and coarsely labeled

data with a total batch size of 60. The learning rate is searched within [0.001, 0.03], and

the weight decay is set for either 0.001 or 0.0001. The final hyper-parameters are set using

the validation set of Semi-iNat, which is not included for the supervised loss but is used for

training MoCo.

For MoCo, we follow the setting of MoCo-v2 [28] and use a batch size of 2048 negative

samples. The training is done with a learning rate of 0.03 and 0.0003, and for 800 and 200

epochs, for training from scratch and from expert models respectively.
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Method from scratch from ImageNet
Hierarchical Supervision (Phylum)→ w/o w/ w/o w/

U
in

Supervised Learning Baseline 18.5 21.7↑ 40.4 46.6↑
Pseudo-Label [97] 18.6 22.7↑ 40.3 44.9↑

FixMatch [148] 15.5 25.7↑ 44.1 47.9↑
Self-Training 20.3 23.7↑ 42.4 44.8↑
MoCo [66] 30.2 33.5↑ 41.7 41.9↑

MoCo + Self-Training [151] 32.0 35.4↑ 42.6 45.8↑

Table 5.2: Results of adding hierarchical loss on the Semi-iNat dataset. Adding hier-
archical loss at the phylum level improves supervised training and all the semi-supervised
methods when images come from Uin, i.e., images with species labels corresponding to
those in the test set. The best methods are shown in teal.

For FixMatch, we follow the original setting and use RandAugment [33] for augmen-

tation. Due to the hardware constraints, we use a batch size of 32 for labeled data and 160

for coarsely labeled data for training using 4 GPUs. When training from scratch, we use

a learning rate of 0.03 for 200k iterations; when training from expert models, we use a

learning rate of 0.001 for 100k iterations. The threshold is set as 0.8 for all the settings.

5.3.2 Using phylum level supervision

We first consider the setting where all the images are within the set of labeled species. In

§ 5.3.4 we will analyze the effect and utility of adding novel species. Models are initialized

randomly or from an ImageNet pre-trained model. For each setting, the baseline supervised

learning and five semi-supervised learning methods are evaluated. We then analyze the

effect of adding hierarchical loss.

Results are presented in Table 5.2. Adding a hierarchical loss gives almost a 10%

improvement for FixMatch and 3% for all other methods when models are trained from

scratch. When initialized with ImageNet pre-trained models, adding hierarchical loss pro-

vides 2-6% improvements in top-1 accuracy except for the self-supervised training method

(MoCo). The confusion matrices at the phylum level for models trained with and with-
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Figure 5.2: Confusion matrices on the phylum level. Left: Supervised baseline model
without coarse-label supervision. Right: FixMatch + hierarchical loss on the phylum level.
Combining semi-supervised methods and hierarchical supervision on coarsely labeled data
reduces the confusion between phyla.

out hierarchical supervision are shown in Figure 5.2. Hierarchy supervision sensibly re-

duces confusion among the four phyla within the animal (A) kingdom (e.g., Antropoda

vs. Echinodermata), as well as at the plant (P) kingdom. The combined effect of hierar-

chical supervision and semi-supervised learning represents an overall improvement from

40.4% to 47.9%.

5.3.3 Using different levels of supervision

We consider supervision across levels of the taxonomy on top of FixMatch and super-

vised baseline. For example, if we have the labels in the order level for coarsely labeled

data, i.e. (uj, y4j ) ∈ U , then the hierarchical loss becomes L7,4
hie . As shown in Figure 5.1

right, we can see that finer-grained labels improve performance, but require more annota-

tion effort. The number of classes on the taxonomy of Semi-iNat is shown in Table 5.1

right, which provides a rough proxy for the annotation effect. Even kingdom-level la-

bel (three categories) leads to small improvements, while class-level supervision (29 cat-

egories) improves the FixMatch performance (FixMatch + none) from 44.1% to 51.8%

(FixMatch + class). Incorporating the hierarchical loss within FixMatch provides con-
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Method from scratch from ImageNet
Hierarchical Supervision (Phylum)→ w/o w/ w/o w/

U
in
+
U
o
u
t

Supervised Learning Baseline 18.5 20.5↑ 40.4 45.6↑
Pseudo-Label [97] 18.8 21.2↑ 40.3 44.0↑

FixMatch [148] 11.0 21.1↑ 38.5 41.1↑
Self-Training 19.7 23.3↑ 41.5 44.1↑
MoCo [66] 31.8 29.4↓ 40.8 39.3↓

MoCo + Self-Training [151] 32.9 35.4↑ 41.5 42.6↑

Table 5.3: Results on the Semi-iNat dataset when having out-of-domain data. The
out-of-domain data Uout degrades the performances of all the methods, except for the self-
supervised method when training from scratch. However, adding hierarchical loss still
gives improvements in most cases. The best methods are shown in teal.

sistent gains over the baseline hierarchical supervised across all levels in the taxonomy,

suggesting that the benefits are complementary.

5.3.4 Effect of domain shift

Next, we consider the case when there exists domain shift, i.e. having Uin + Uout. The

results are shown in Table 5.3. When training w/o coarse label supervision and initialized

with ImageNet model, adding data from Uout degrades the performance by up to 4%, com-

paring to Table 5.2. In particular, FixMatch is less robust to the domain shift, echoing the

findings in [151]. However, adding the hierarchical loss still gives up to 5% improvements

except for MoCo. When training from scratch, we can see similar trends, but here MoCo +

Self-Training performs the best.

To alleviate the effect of domain shift, we propose to filter the data by the confidence

of the predicted labels before training semi-supervised methods. We first use the baseline

model to generate predictions for images in Uin + Uout, then check if the maximum prob-

ability is greater than a threshold τ = 0.8. We found that works well in practice, though

more sophisticated out-of-domain detection techniques can be used. We additionally check

if the coarse labels overlap with those in the Uin to filter out out-of-domain images. We
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then train FixMatch using the selected coarse-labeled images. Using the supervision at

the phylum level obtains an accuracy of 42.0% accuracy compared to 41.1% without any

domain selection. This allows us to use uncurated data for improving performance, though

the performance is lower than that of having only in-domain data (47.9%).
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CHAPTER 6

CONCLUSION

Learning from few labeled data for visual recognition tasks is challenging. In Chapter

2, we used different modalities to improve image recognition through distillation. Yet,

other modalities to explore include video and audio, image and text, and point clouds from

LIDAR. Recently, many works are using contrastive learning for learning across modalities.

Combining contrastive learning and distillation can further improve cross-modal learning.

Chapter 3 showed that self-supervised learning could improve few-shot learning, and

extra unlabeled data can only help if the data is from a similar domain. We proposed to use

a domain classifier for selecting images as the initial attempt. How to better incorporate the

image selection process and self-supervised learning could be further investigated.

Chapter 4 created a new benchmark for semi-supervised learning, showing that exist-

ing methods are far from the performance of the oracle and are not effective as transfer

learning. Moreover, our results show that the benefit of Semi-SL decreases when hav-

ing out-of-class unlabeled data and initialized with expert models. We further leverage

the coarse labels of the unlabeled data to improve semi-supervised learning in Chapter 5.

However, semi-supervised learning is still far from being solved. One future direction is se-

lecting unlabeled data during Semi-SL training, as simple thresholding the predictions (e.g.

pseudo-label) does not improve. Another direction is to incorporate novel class predictions

of the unlabeled data. Lastly, one of the standard Semi-SL methods is to use self-supervised

pre-training followed by self-training. However, this method requires a separate training

stage for self-supervised learning, and the representations may not be helpful later during
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supervised fine-tuning. How to bridge self-supervised and semi-supervised learning needs

further investigation.
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[119] Pathak, Deepak, Krähenbühl, Philipp, Donahue, Jeff, Darrell, Trevor, and Efros,
Alexei A. Context encoders: Feature learning by inpainting. In Computer Vision
and Pattern Recognition (CVPR) (2016).

[120] Peng, Xingchao, Hoffman, Judy, Yu, Stella X., and Saenko, Kate. Fine-to-coarse
knowledge transfer for low-res image classification. In IEEE International Confer-
ence on Image Processing (ICIP) (2016).

[121] Phong, Bui Tuong. Illumination for computer generated pictures. Communications
of the ACM 18, 6 (1975), 311–317.

[122] Qi, Charles, Su, Hao, Nießner, Matthias, Dai, Angela, Yan, Mengyuan, and Guibas,
Leonidas. Volumetric and multi-view cnns for object classification on 3d data. In
Computer Vision and Pattern Recognition (CVPR) (2016).

[123] Qi, Charles R., Yi, Li, Su, Hao, and Guibas, Leonidas J. Pointnet++: Deep hi-
erarchical feature learning on point sets in a metric space. In Neural Information
Processing Systems (NeurIPS) (2017).

[124] Qi, Hang, Brown, Matthew, and Lowe, David G. Low-shot learning with imprinted
weights. In Computer Vision and Pattern Recognition (CVPR) (2018).

[125] Qiao, Siyuan, Liu, Chenxi, Shen, Wei, and Yuille, Alan L. Few-shot image recog-
nition by predicting parameters from activations. In Computer Vision and Pattern
Recognition (CVPR) (2018).

[126] Qiao, Siyuan, Shen, Wei, Zhang, Zhishuai, Wang, Bo, and Yuille, Alan. Deep co-
training for semi-supervised image recognition. In European Conference on Com-
puter Vision (ECCV) (2018).

[127] Rasmus, Antti, Berglund, Mathias, Honkala, Mikko, Valpola, Harri, and Raiko,
Tapani. Semi-supervised learning with ladder networks. In Neural Information
Processing Systems (NeurIPS) (2015).

93



[128] Ravi, Sachin, and Larochelle, Hugo. Optimization as a model for few-shot learning.
In International Conference on Learning Representations (ICLR) (2017).

[129] Razavin, A. Sharif, Azizpour, H., Sullivan, J., and Carlsson, S. Cnn features off-the-
shelf: An astounding baseline for recognition. In DeepVision workshop (2014).

[130] Rebuffi, Sylvestre-Alvise, Ehrhardt, Sebastien, Han, Kai, Vedaldi, Andrea, and Zis-
serman, Andrew. Semi-supervised learning with scarce annotations. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Work-
shops (2020), pp. 762–763.

[131] Ren, Mengye, Triantafillou, Eleni, Ravi, Sachin, Snell, Jake, Swersky, Kevin, Tenen-
baum, Joshua B, Larochelle, Hugo, and Zemel, Richard S. Meta-learning for semi-
supervised few-shot classification. In International Conference on Learning Repre-
sentations (ICLR) (2018).

[132] Riegler, Gernot, Ulusoy, Ali Osman, and Geiger, Andreas. Octnet: Learning deep
3d representations at high resolutions. In Computer Vision and Pattern Recognition
(CVPR) (2017).

[133] Ristin, Marko, Gall, Juergen, Guillaumin, Matthieu, and Van Gool, Luc. From cat-
egories to subcategories: large-scale image classification with partial class label re-
finement. In Computer Vision and Pattern Recognition (CVPR) (2015).

[134] Russakovsky, Olga, Deng, Jia, Su, Hao, Krause, Jonathan, Satheesh, Sanjeev, Ma,
Sean, Huang, Zhiheng, Karpathy, Andrej, Khosla, Aditya, Bernstein, Michael, Berg,
Alexander C., and Fei-Fei, Li. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision (IJCV) 115, 3 (2015), 211–252.

[135] Rusu, Andrei A, Rao, Dushyant, Sygnowski, Jakub, Vinyals, Oriol, Pascanu, Raz-
van, Osindero, Simon, and Hadsell, Raia. Meta-learning with latent embedding
optimization. arXiv preprint arXiv:1807.05960 (2018).

[136] Sajjadi, Mehdi, Javanmardi, Mehran, and Tasdizen, Tolga. Regularization with
stochastic transformations and perturbations for deep semi-supervised learning. In
Neural Information Processing Systems (NeurIPS) (2016).

[137] Samplawski, Colin, Learned-Miller, Erik, Kwon, Heesung, and Marlin, Ben-
jamin M. Zero-shot learning in the presence of hierarchically coarsened labels. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition Workshops (2020), pp. 926–927.

[138] Schwartz, Eli, Karlinsky, Leonid, Shtok, Joseph, Harary, Sivan, Marder, Mattias,
Kumar, Abhishek, Feris, Rogerio, Giryes, Raja, and Bronstein, Alex. Delta-encoder:
an effective sample synthesis method for few-shot object recognition. In Neural
Information Processing Systems (NeurIPS) (2018).

[139] Scudder, H. Probability of error of some adaptive pattern-recognition machines.
IEEE Transactions on Information Theory 11, 3 (1965), 363–371.

94



[140] Sedaghat, Nima, Zolfaghari, Mohammadreza, Amiri, Ehsan, and Brox, Thomas.
Orientation-boosted voxel nets for 3d object recognition. British Machine Vision
Conference (BMVC) (2017).

[141] Sener, Ozan, and Koltun, Vladlen. Multi-task learning as multi-objective optimiza-
tion. In Neural Information Processing Systems (NeurIPS) (2018).

[142] Sermanet, Pierre, Frome, Andrea, and Real, Esteban. Attention for fine-grained
categorization. arXiv preprint arXiv:1412.7054 (2014).

[143] Sfikas, Konstantinos, Theoharis, Theoharis, and Pratikakis, Ioannis. Exploiting
the panorama representation for convolutional neural network classification and re-
trieval. In Eurographics Workshop on 3D Object Retrieval (2017).

[144] Shen, Yiru, Feng, Chen, Yang, Yaoqing, and Tian, Dong. Neighbors do help: Deeply
exploiting local structures of point clouds. arXiv preprint arXiv:1712.06760 (2017).

[145] Simonyan, Karen, and Zisserman, Andrew. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[146] Snell, Jake, Swersky, Kevin, and Zemel, Richard. Prototypical networks for few-shot
learning. In Neural Information Processing Systems (NeurIPS) (2017).

[147] Socher, Richard, Ganjoo, Milind, Manning, Christopher D, and Ng, Andrew. Zero-
shot learning through cross-modal transfer. Advances in neural information process-
ing systems 26 (2013), 935–943.

[148] Sohn, Kihyuk, Berthelot, David, Li, Chun-Liang, Zhang, Zizhao, Carlini, Nicholas,
Cubuk, Ekin D, Kurakin, Alex, Zhang, Han, and Raffel, Colin. Fixmatch: Simplify-
ing semi-supervised learning with consistency and confidence. In Neural Informa-
tion Processing Systems (NeurIPS) (2020).

[149] Su, Hang, Maji, Subhransu, Kalogerakis, Evangelos, and Learned-Miller, Erik G.
Multi-view convolutional neural networks for 3d shape recognition. In International
Conference on Computer Vision (ICCV) (2015).

[150] Su, Hao, Qi, Charles, Mo, Kaichun, and Guibas, Leonidas. Pointnet: Deep learning
on point sets for 3d classification and segmentation. In Computer Vision and Pattern
Recognition (CVPR) (2017).

[151] Su, Jong-Chyi, Cheng, Zezhou, and Maji, Subhransu. A realistic evaluation of semi-
supervised learning for fine-grained classification. In Computer Vision and Pattern
Recognition (CVPR) (2021).

[152] Su, Jong-Chyi, Gadelha, Matheus, Wang, Rui, and Maji, Subhransu. A deeper look
at 3d shape classifiers. In Second Workshop on 3D Reconstruction Meets Semantics,
ECCV (2018).

95



[153] Su, Jong-Chyi, and Maji, Subhransu. Adapting models to signal degradation using
distillation. In British Machine Vision Conference (BMVC) (2017).

[154] Su, Jong-Chyi, and Maji, Subhransu. The semi-supervised inaturalist-aves challenge
at fgvc7 workshop. arXiv preprint arXiv:2103.06937 (2021).

[155] Su, Jong-Chyi, and Maji, Subhransu. The semi-supervised inaturalist challenge at
the fgvc8 workshop. arXiv preprint arXiv:2106.01364 (2021).

[156] Su, Jong-Chyi, Maji, Subhransu, and Hariharan, Bharath. When does self-
supervision improve few-shot learning? In ECCV (2020).

[157] Sun, Chen, Shrivastava, Abhinav, Singh, Saurabh, and Gupta, Abhinav. Revisiting
unreasonable effectiveness of data in deep learning era. In International Conference
on Computer Vision (ICCV) (2017).

[158] Sung, Flood, Yang, Yongxin, Zhang, Li, Xiang, Tao, Torr, Philip H.S., and
Hospedales, Timothy M. Learning to compare: Relation network for few-shot learn-
ing. In Computer Vision and Pattern Recognition (CVPR) (2018).

[159] Taherkhani, Fariborz, Kazemi, Hadi, Dabouei, Ali, Dawson, Jeremy, and Nasrabadi,
Nasser M. A weakly supervised fine label classifier enhanced by coarse supervision.
In International Conference on Computer Vision (ICCV) (2019).

[160] Tarvainen, Antti, and Valpola, Harri. Weight-averaged, consistency targets improve
semi-supervised deep learning results. CoRR,, vol. abs/1703 2017 (1780).

[161] Tian, Yonglong, Krishnan, Dilip, and Isola, Phillip. Contrastive representation dis-
tillation. arXiv preprint arXiv:1910.10699 (2019).

[162] Tian, Yonglong, Krishnan, Dilip, and Isola, Phillip. Contrastive multiview coding.
In European Conference on Computer Vision (ECCV) (2020).

[163] Tian, Yonglong, Wang, Yue, Krishnan, Dilip, Tenenbaum, Joshua B, and Isola,
Phillip. Rethinking few-shot image classification: a good embedding is all you
need? arXiv preprint arXiv:2003.11539 (2020).

[164] Touvron, Hugo, Sablayrolles, Alexandre, Douze, Matthijs, Cord, Matthieu, and
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