9,474 research outputs found

    Partition of Unity Interpolation on Multivariate Convex Domains

    Full text link
    In this paper we present a new algorithm for multivariate interpolation of scattered data sets lying in convex domains \Omega \subseteq \RR^N, for any N≄2N \geq 2. To organize the points in a multidimensional space, we build a kdkd-tree space-partitioning data structure, which is used to efficiently apply a partition of unity interpolant. This global scheme is combined with local radial basis function approximants and compactly supported weight functions. A detailed description of the algorithm for convex domains and a complexity analysis of the computational procedures are also considered. Several numerical experiments show the performances of the interpolation algorithm on various sets of Halton data points contained in Ω\Omega, where Ω\Omega can be any convex domain like a 2D polygon or a 3D polyhedron

    A trivariate interpolation algorithm using a cube-partition searching procedure

    Get PDF
    In this paper we propose a fast algorithm for trivariate interpolation, which is based on the partition of unity method for constructing a global interpolant by blending local radial basis function interpolants and using locally supported weight functions. The partition of unity algorithm is efficiently implemented and optimized by connecting the method with an effective cube-partition searching procedure. More precisely, we construct a cube structure, which partitions the domain and strictly depends on the size of its subdomains, so that the new searching procedure and, accordingly, the resulting algorithm enable us to efficiently deal with a large number of nodes. Complexity analysis and numerical experiments show high efficiency and accuracy of the proposed interpolation algorithm

    Two-dimensional interpolation using a cell-based searching procedure

    Full text link
    In this paper we present an efficient algorithm for bivariate interpolation, which is based on the use of the partition of unity method for constructing a global interpolant. It is obtained by combining local radial basis function interpolants with locally supported weight functions. In particular, this interpolation scheme is characterized by the construction of a suitable partition of the domain in cells so that the cell structure strictly depends on the dimension of its subdomains. This fact allows us to construct an efficient cell-based searching procedure, which provides a significant reduction of CPU times. Complexity analysis and numerical results show such improvements on the algorithm performances

    Non-Parametric Approximations for Anisotropy Estimation in Two-dimensional Differentiable Gaussian Random Fields

    Full text link
    Spatially referenced data often have autocovariance functions with elliptical isolevel contours, a property known as geometric anisotropy. The anisotropy parameters include the tilt of the ellipse (orientation angle) with respect to a reference axis and the aspect ratio of the principal correlation lengths. Since these parameters are unknown a priori, sample estimates are needed to define suitable spatial models for the interpolation of incomplete data. The distribution of the anisotropy statistics is determined by a non-Gaussian sampling joint probability density. By means of analytical calculations, we derive an explicit expression for the joint probability density function of the anisotropy statistics for Gaussian, stationary and differentiable random fields. Based on this expression, we obtain an approximate joint density which we use to formulate a statistical test for isotropy. The approximate joint density is independent of the autocovariance function and provides conservative probability and confidence regions for the anisotropy parameters. We validate the theoretical analysis by means of simulations using synthetic data, and we illustrate the detection of anisotropy changes with a case study involving background radiation exposure data. The approximate joint density provides (i) a stand-alone approximate estimate of the anisotropy statistics distribution (ii) informed initial values for maximum likelihood estimation, and (iii) a useful prior for Bayesian anisotropy inference.Comment: 39 pages; 8 figure

    Monotonicity preserving approximation of multivariate scattered data

    Full text link
    This paper describes a new method of monotone interpolation and smoothing of multivariate scattered data. It is based on the assumption that the function to be approximated is Lipschitz continuous. The method provides the optimal approximation in the worst case scenario and tight error bounds. Smoothing of noisy data subject to monotonicity constraints is converted into a quadratic programming problem. Estimation of the unknown Lipschitz constant from the data by sample splitting and cross-validation is described. Extension of the method for locally Lipschitz functions is presented.<br /

    On Polyharmonic Interpolation

    Get PDF
    In the present paper we will introduce a new approach to multivariate interpolation by employing polyharmonic functions as interpolants, i.e. by solutions of higher order elliptic equations. We assume that the data arise from C∞C^{\infty} or analytic functions in the ball BR.B_{R}. We prove two main results on the interpolation of C∞C^{\infty} or analytic functions ff in the ball BRB_{R} by polyharmonic functions hh of a given order of polyharmonicity $p.

    Local interpolation schemes for landmark-based image registration: a comparison

    Full text link
    In this paper we focus, from a mathematical point of view, on properties and performances of some local interpolation schemes for landmark-based image registration. Precisely, we consider modified Shepard's interpolants, Wendland's functions, and Lobachevsky splines. They are quite unlike each other, but all of them are compactly supported and enjoy interesting theoretical and computational properties. In particular, we point out some unusual forms of the considered functions. Finally, detailed numerical comparisons are given, considering also Gaussians and thin plate splines, which are really globally supported but widely used in applications
    • 

    corecore