7,237 research outputs found

    Multivariate Regression with Incremental Learning of Gaussian Mixture Models

    Get PDF
    La publicació definitiva d'aquest treball està disponible a IOS Press a través de http://dx.doi.org/10.3233/978-1-61499-806-8-196Within the machine learning framework, incremental learning of multivariate spaces is of special interest for on-line applications. In this work, the regression problem for multivariate systems is solved by implementing an efficient probabilistic incremental algorithm. It allows learning high-dimensional redundant non-linear maps by the cumulative acquisition of data from input-output systems. The proposed model is aimed at solving prediction and inference problems. The implementation introduced in this work allows learning from data batches without the need of keeping them in memory afterwards. The learning architecture is built using Incremental Gaussian Mixture Models. The Expectation-Maximization algorithm and general geometric properties of Gaussian distributions are used to train the models. Our current implementation can produce accurate results fitting models in real multivariate systems. Results are shown from testing the algorithm for both situations, one where the incremental learning is demonstrated and the second where the performance to solve the regression problem is evaluated on a toy example.Peer ReviewedPostprint (author's final draft

    An empirical learning-based validation procedure for simulation workflow

    Full text link
    Simulation workflow is a top-level model for the design and control of simulation process. It connects multiple simulation components with time and interaction restrictions to form a complete simulation system. Before the construction and evaluation of the component models, the validation of upper-layer simulation workflow is of the most importance in a simulation system. However, the methods especially for validating simulation workflow is very limit. Many of the existing validation techniques are domain-dependent with cumbersome questionnaire design and expert scoring. Therefore, this paper present an empirical learning-based validation procedure to implement a semi-automated evaluation for simulation workflow. First, representative features of general simulation workflow and their relations with validation indices are proposed. The calculation process of workflow credibility based on Analytic Hierarchy Process (AHP) is then introduced. In order to make full use of the historical data and implement more efficient validation, four learning algorithms, including back propagation neural network (BPNN), extreme learning machine (ELM), evolving new-neuron (eNFN) and fast incremental gaussian mixture model (FIGMN), are introduced for constructing the empirical relation between the workflow credibility and its features. A case study on a landing-process simulation workflow is established to test the feasibility of the proposed procedure. The experimental results also provide some useful overview of the state-of-the-art learning algorithms on the credibility evaluation of simulation models

    Learning the dynamics of articulated tracked vehicles

    Get PDF
    In this work, we present a Bayesian non-parametric approach to model the motion control of ATVs. The motion control model is based on a Dirichlet Process-Gaussian Process (DP-GP) mixture model. The DP-GP mixture model provides a flexible representation of patterns of control manoeuvres along trajectories of different lengths and discretizations. The model also estimates the number of patterns, sufficient for modeling the dynamics of the ATV
    • …
    corecore