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Abstract. Within the machine learning framework, incremental learning of mul-
tivariate spaces is of special interest for on-line applications. In this work, the re-
gression problem for multivariate systems is solved by implementing an efficient
probabilistic incremental algorithm. It allows learning high-dimensional redundant
non-linear maps by the cumulative acquisition of data from input-output systems.
The proposed model is aimed at solving prediction and inference problems. The
implementation introduced in this work allows learning from data batches without
the need of keeping them in memory afterwards. The learning architecture is built
using Incremental Gaussian Mixture Models. The Expectation-Maximization algo-
rithm and general geometric properties of Gaussian distributions are used to train
the models. Our current implementation can produce accurate results fitting mod-
els in real multivariate systems. Results are shown from testing the algorithm for
both situations, one where the incremental learning is demonstrated and the sec-
ond where the performance to solve the regression problem is evaluated on a toy
example.
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1. Introduction

Gaussian Mixture Models (GMMs) are appealed frequently in machine learning appli-
cations and related areas, since they are among the most used methods for clustering.
In such a context, they are commonly employed in tasks where it is necessary to model
complex and nonlinear parameters [1]. However, recently they have been actively applied
to solve the regression problem and they have also been used to model high dimensional,
non-linear redundant maps [2,3,4].

On the other hand, incremental learning algorithms might play a critical role in many
applications. Those algorithms consider the learning scenario for streaming data arriving
over time and have been widely applied in machine learning, pattern recognition, data
mining, and fuzzy logic [5,1,6]. In [6], a summary of the challenges for incremental
learning is presented, furthermore some of the main techniques that have been applied
to solve the problem are described. In general, most of the machine learning techniques
have been extended to cover the incremental learning paradigm opening the door to new
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challenges (e.g. Support Vector Machines, Decision Trees, Genetic Algorithms, Gaussian
Mixture Models, among others.). The reader is refereed to [6] for further details.

Incremental learning using GMMs has been previously studied with more emphasis
on its applications as a semi-supervised classifier method and density distribution esti-
mator [5,1,7]. However, in this work we focus on its suitability to solve the regression
problem within the incremental learning framework.

The architecture presented in this work is suitable, but not limited, to solve the prob-
lem of modeling input-output multivariate systems. Data feeding the system is not avail-
able at the beginning, but it is collected incrementally in data batches of input-output
data points. Therefore, the model is trained each time a new data batch is available and
afterwards that data batch is discarded.

The main contribution of this paper is twofold: to combine two interesting mecha-
nisms, incremental learning and regression, using GMM and providing the source code
for those researchers who are interested in testing the approach in their own work2. This
work uses simple examples to make it easier for the reader to understand the approach,
but we have also tested the approach in more complicated systems as the vocal tract in
[3,4] even though in those works the incremental learning mechanisms were different to
the one presented here.

The reminder of this paper is organized as follows. Section 2 introduces the incre-
mental learning algorithm and the regression mechanism for multivariate systems. Sec-
tion 3 presents a simple example that shows how the incremental learning mechanism
works. Section 4 introduces a simple non-linear redundant input-output system used to
illustrates how the regression mechanism works to solve the inference problem. Finally,
a brief conclusion is presented in Section 5.

2. Learning Algorithm

The learning procedure consists of two main mechanisms: the first one is the traditional
Expectation-Maximization algorithm (EM-algorithm) training algorithm for Gaussian
Mixture Models; the second step is the incremental mechanism that allows to include
new knowledge in previously trained GMMs.

First of all, we assume a multivariate input-output system x = f (y), for which ex-
periments are run to generate data batches of the extended vector z = [x,y]T . Then, a
starting GMM is computed for the system described by z ∈ X ×Y using the initial data.
A Gaussian Mixture Model is defined by the set of parameters {π j,µ j,Σ j}K

j=1, where π j,
µ j and Σ j are respectively the prior probability, the distribution mean and the covariance
matrix of the j-th Gaussian, for j = 1,2, ...,K, being K the number of Gaussian com-
ponents. In Algorithm 1, the incremental learning algorithm used to train a GMM using
data batches is summarized.

Algorithm 1 is fed with the following parameters: the minimum and maximum num-
ber of Gaussian components in the model, Kmin and Kmax respectively, the maximum
number of Gaussian components that can be added to the model at each training step,
∆Kmax, and the forgetting rate, α . In line 2, the GMM is initialized using the first batch
of data, B0, the getBestGMM function computes a GMM for each value of K within the
allowed interval [Kmin,Kmax]. From those models, the one that best fits the data batch
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according to the Bayes Information Criterion (BIC), which is based on the maximum
likelihood function, is selected. We will call the selected model, gmm. In getBestGMM,
the GMMs are obtained using the EM-algorithm implemented in the open-source library
scikit-learn3, but also available in other open source tools (i.e. TensorFlow, Open-CV,
and others).

Algorithm 1 Growing Gaussian Mixture Model Algorithm
1: Set parameters: Kmin, Kmax, ∆Kmax, α .
2: gmm← getBestGMM(B0, Kmin, ∆Kmax)
3: for Bi in B do
4: gmmnew← getBestGMM(Bi, Kmin, ∆Kmax)
5: gmmnew.gauss[:].w← α ∗gmmnew.gauss[:].w
6: gmm.gauss[:].w← (1−α)∗gmm.gauss[:].w
7: SDKL← getKLDiveregence(gmm, gmmnew)
8: while gmm.k+gmmnew.k > Kmax do
9: i, j = argmin(SDKL)

10: gmm.gauss[i] = merge(gmm.gauss[i],gmmnew.gauss[ j])
11: delete(gmmnew.gauss[ j]), SDKL[i, j] = ∞

12: end while
13: gmm← join(gmm,gmmnew)
14: end for

From line 3, the model is trained every time a new data batch Bi is available. In line
4, a new GMM, gmmnew, is computed feeding the getBestGMM function with Bi. In lines
5 and 6, the prior of each component in gmm and gmmnew is updated, respectively. The
prior’s update is done according to the forgetting rate, α .

The most important step for the incremental learning mechanism is the merging of
Gaussian components. Choosing which components of gmmnew will be merged to which
components of gmm is the most challenging task of our approach. Therefore, before any
components could be merged, a divergence matrix is obtained to evaluate the similarity
between Gaussian components in gmmnew and gmm. Similarly to [1], we consider the
Kullback-Leibler divergence (KLD) defined as

DKL(g1,g2) = log
(
|Σ2|
|Σ1|

)
+ tr(Σ−1

2 Σ1)+(µ2−µ1)
T

Σ
−1
1 (µ2−µ1)−D, (1)

but as it is not a symmetric measure, we use a symmetrized version defined as

sDKL =
1
2
(DKL(g1,g2)+DKL(g2,g1)) . (2)

Finally, lines 8-12 of Algorithm 1 represent the merging process. Therein, the most
similar Gaussian component in gmmnew is merged to its most similar counterpat in gmm
and dropped. This process is repeated until the sum of components between both models
is not larger than the maximum number of components Kmax. Based on the geometric
properties of Gaussian functions, the merge operation is shown in in Algorithm 2 from

3http://scikit-learn.org/stable/



[1]. Finally, if after the meging process there are remaining components in gmmnew, then
they are included in gmm in line 13.

Algorithm 2 Algorithm to merge two Gaussians
merge(gaus1, gaus2)

1: f1 =
w1

w1+w2
, f2 =

w2
w1+w2

2: w = f1 + f2
3: µ = f1µ1 + f2µ2, Σ = f1Σ2 + f2Σ2 + f1 f2(µ1−µ2)(µ1−µ2)

T

4: gauss← w,µ,Σ
5: return gauss

Algorithm 3 Algorithm to infer complete data from incomplete data
infer(x, gmm, nn)

1: d← zeros(gmm.k,1)
2: for i in range(gmm.k) do
3: d[i]← |gmm.gauss[i].µ−x|
4: end for
5: idx← argsort(d) % ascending order
6: Y = zeros(lenght(gmm.gauss[0].µ)− lenght(x),nn), P = zeros(nn,1)
7: for i in range(nn) do
8: µi← gmm.gauss[idx[i]].µ , Σi← gmm.gauss[idx[i]].Σ
9: Y[:, i] = µ

y
i +Σ

yx
i (Σx

i )
−1(x−µx

i )
10: ẑi = [x,Y[:, i]]T

11: P[i] = πi
1√

(2π)K |Σi|
e−

1
2 ((ẑi−µi)

T
Σ
−1
i (ẑi−µi))

12: end for
13: return Y[:,argmin(P)]

2.1. Regression method

This regression mechanism follows our previous works [3,4] and it is based on Gaussian
Mixture Regression (GMR) from [8]. It is summarized in Algorithm 3. An n-dimensional
input space X ∈ Rn is mapped onto an m-dimensional output space Y ∈ Rm. Thus, the
function y = f (x)+ ε is assumed, where y ∈ Y , x ∈ X and ε is random noise. A GMM
is trained using the algorithm introduced before with data batches of couples (x,y).

To obtain the input x that maximizes the probability to produce the output y, the
GMR process first defines the partitioned vector z ∈ X×Y , where

z =
(

x
y

)
. (3)

For each Gaussian j in the GMM the partitions

µ j =

(
µx

j
µ

y
j

)
and Σ j =

(
Σx

j Σ
xy
j

Σyx Σ
y
j

)
, (4)



are considered to compute the conditional probability distribution Pj(X | y)∼ N j(µ̂ j, Σ̂ j)
over the input space X given a desired output y, where

µ̂ j = µ
y
j +Σ

yx
j (Σ

x
j)
−1(x−µ

x
j ) , Σ̂ j = Σ

y
j +Σ

yx
j (Σ

x
j)
−1

Σ
xy
j . (5)

Considering that P(X | y) is at its maximum when x = x̂ j = µ̂ j, then a natural selection
for x in order to produce y is x̂ j. But we have K candidates for x, hence it is necessary to
compute the probability of the vector ẑ j = [x̂ j, y]T belonging to its generator Gaussian
as

P(ẑ j) = π j
1√

(2π)K |Σ j|
e−

1
2

(
(ẑ j−µ j)

T
Σ
−1
j (ẑ j−µ j)

)
, (6)

and finally the point z∗ = ẑ j that maximizes P(ẑ j) is selected as the point that better fits
the model. In other words, according to our prior knowledge of f (x), z∗ ∈ f (x), we infer
that the output y is generated by x̂ j.

It is also interesting to mention that, in order to minimize computation time to obtain
only x, the regression might be restricted to the k-nearest Gaussian components to y con-
sidering their mean partition µ i

j. As observed in Algorithm 3, our regression mechanism
considers nn nearest neighbors. Finally, depending on how the partitions are defined in
Eqs. (3)-(4) the mechanism can be used either for inferring x from y, or for predicting y
from x.

3. Incremental Learning Example

In this section we present a simple example to illustrate the growth of a GMM using
our incremental learning algorithm. We consider data batches randomly generated from
2-dimensional Gaussian distributions. Those data batches arrive at three different times.
Figure 1 shows training steps at t−2 and t−1, whereas Figure 2 shows training step at
t. The parameters considered to obtain that figure are Kmin = 2, Kmax = 5, ∆Kmax = 5 and
α = 0.05.

In Figure 1, it is observed that at time t−2, the model gmm obtained with the data
batch is a mixture with two components. As it is the first step, the model is the result of
the pure EM-algorithm choosing the number of components that maximizes the BIC as
indicated in line 2 of Algorithm 1. Then, at time t− 1 a new data batch is available as
showed at the central plot in Figure 1. The GMM gmmnew that best fits the new data is
selected as indicated in line 4 of Algorithm 1. The next step is to merge the Gaussian
components of gmm and gmmnew until the total number of components is lower or equal
to Kmax. Notice in the figure that the only components which are merged are those colored
in red.

A second step of incremental learning is observed in Figure 2 after a new data batch
arrives. Again a GMM gmmnew is fitted to the new incoming data using the EM-algorithm
and the BIC criteria. In this case as the number of components of the model has already
reached its maximum (Kmax = 5), all the components in gmmnew must be merged to
the components in gmm. Figure 2 indicates with distinctive colors which components in
gmmnew and gmm are merged to obtain the new gmm.



Figure 1. Incremental learning of a GMM. At t−2 pure EM-algorithm is used to initialize the model at t−1.
The proposed incremental learning mechanism is used at time t− 1 to growth the model with new incoming
data.

Figure 2. Incremental learning of a GMM. A model that has been already initialized is trained with our incre-
mental learning mechanism at time t with new incoming data.

Figure 2 contains relevant information to understand what happens at the incremen-
tal learning level mechanism. Consider for instance the green component, the mechanism
chooses to mix these two components based on the sKLD measure, however the result in
gmmt is very similar to the component in gmmt−1. This is attributed to the prior weight
w of each Gaussian, the prior weights in gmmw are scaled by the forgetting factor. Thus,
when f1 and f2 are computed in line 1 of Algorithm 2, the component that is already
in the model is considered more relevant and it is slightly modified by the new data. It
means that it is very important to choose a good value for the forgetting factor α which
not necessarily must be constant. An adequate value for α will depend on the system
to be modelled, the size of the incoming data batches and the mechanisms used to draw
those data batches. For example, in former works [3,4], we adopt an active learning ar-
chitecture inspired on [9] and [2] to draw data batches in order to maximize a measure of
learning rate. In general, choosing Kmin, Kmax and ∆Kmax will depend on the complexity
of the system to be modelled.



Figure 3. Parabolic Shaped Region System

4. Regression Problem Example

In order to show the performance of our modeling approach we proposed the inference
problem x = f (y) for the simple toy example represented by

x =

(
x1
x2

)
, y =

(
y1
y2

)
= f (x) =

(
x1

(x2−3)2

)
and c =

{
1 if y ∈ constraints
0 elsewere

(7)

where yi are the components of the output space, xi the components of the input space
and c is a signal indicating if constraints are violated or not. As it is observed in Figure 3,
the output-space projection is a parabolic shaped region where the red regions represent
constraints.

When constraints are violated then y takes the closest value (y1,y2)
T on the valid

region. Both input components are constrained to the interval [0,6], whilst output dimen-
sions are constrained to the white region and its blue borders in Figure 3. Therefore, due
to the definition of the system it is non-linear, constrained and redundant which makes
this system interesting to study in a simple-fashion manner the validity of our approach
before applying it to more complex systems with a higher number of dimensions.

In order to show some examples with the regression mechanism for the parabolic
shaped region system, we propose to train three 4-dimensional GMM using the incre-
mental learning mechanisms from Algorithm 1. Each model is trained with random data
obtained using different random seeds.

First of all, the parameter chosen to generate the models are: Kmin = 3, Kmax = 10,
∆Kmax = 7 and α = 0.2. The model is trained with batches of data with 15 couples (x,y),
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Figure 4. Using our incremental learning approach to solve the inference problem of input commands from
output goals. The columns correspond to experiments using different random seeds. The first row are the
training samples used along all the training steps. The second row corresponds to the evolution of the average
evaluation error norm at each training step. The third row corresponds to the evaluation results after the last
training step.

generated obtaining 15 random inputs x from the allowed input space and obtaining its
corresponding output y. Each model is trained with 10 data batches and after each train-
ing step models are evaluated. The evaluation data set consists of 177 samples uniformly
distributed over the whole sensor space.

In Figure 4, the results for the simulations to learn the parabolic shaped system
are shown. Each column correspond to a simulation with each of the three different
random seeds, whereas the first row correspond to the accumulated random data points



used to train the models. The second row corresponds to the average norm error during
the evaluation after each training step. Finally, the third row corresponds to the output
projection of the system after a final evaluation. The blue points represent each of the
output goals in the evaluation data set, and the small red crosses are the actual reached
output configurations.

In the third row of Figure 4, we observe a good performance of the model when
solving even though few samples are considered for training (150 samples divided in 10
batches). Moreover, the training samples are not uniformly distributed along the output
space due to the their random source. From the last row, it is also obvious that the learning
system struggles fitting the model to the system around the minimum of the parabola.
We argue that it is due to the presence of many constraints in the neighborhood and the
non-linear nature of the system.

5. Conclusion

We have presented a novel approach to solve the regression problem for multivariate
input-output systems. The illustrative examples show the suitability of the approach to
efficiently learn a probabilistic model of the system and update the model with new
incoming data batches without the need of keeping in memory the already learned data.
On the other hand, we introduced a simple example to demonstrate with good results
the applicability of the approach to solve the inference of input commands from desired
output goals. The proposed approach is also suitable to solve the prediction problem, in
other words it can be used to predict output results from input commands.

We leave for future work three main topics. First, a comparison of our approach with
other incremental learning approaches for regression purposes. Second, a deeper study
on the parametrization of the model and the study of new divergence measures with more
tools to improve the incremental learning mechanism. And third, to apply the approach
in more real problems that allows an easy visualization of its performance.
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