1,829 research outputs found

    Continuous glucose monitoring sensors: Past, present and future algorithmic challenges

    Get PDF
    Continuous glucose monitoring (CGM) sensors are portable devices that allow measuring and visualizing the glucose concentration in real time almost continuously for several days and are provided with hypo/hyperglycemic alerts and glucose trend information. CGM sensors have revolutionized Type 1 diabetes (T1D) management, improving glucose control when used adjunctively to self-monitoring blood glucose systems. Furthermore, CGM devices have stimulated the development of applications that were impossible to create without a continuous-time glucose signal, e.g., real-time predictive alerts of hypo/hyperglycemic episodes based on the prediction of future glucose concentration, automatic basal insulin attenuation methods for hypoglycemia prevention, and the artificial pancreas. However, CGM sensors’ lack of accuracy and reliability limited their usability in the clinical practice, calling upon the academic community for the development of suitable signal processing methods to improve CGM performance. The aim of this paper is to review the past and present algorithmic challenges of CGM sensors, to show how they have been tackled by our research group, and to identify the possible future ones

    Blood Glucose Forecasting using LSTM Variants under the Context of Open Source Artificial Pancreas System

    Get PDF
    High accuracy of blood glucose prediction over the long term is essential for preventative diabetes management. The emerging closed-loop insulin delivery system such as the artificial pancreas system (APS) provides opportunities for improved glycaemic control for patients with type 1 diabetes. Existing blood glucose studies are proven effective only within 30 minutes but the accuracy deteriorates drastically when the prediction horizon increases to 45 minutes and 60 minutes. Deep learning, especially for long short term memory (LSTM) and its variants have recently been applied in various areas to achieve state-of-the-art results in tasks with complex time series data. In this study, we present deep LSTM based models that are capable of forecasting long term blood glucose levels with improved prediction and clinical accuracy. We evaluate our approach using 20 cases(878,000 glucose values) from Open Source Artificial Pancreas System (OpenAPS). On 30-minutes and 45-minutes prediction, our Stacked-LSTM achieved the best performance with Root-Mean-Square-Error (RMSE) marks 11.96 & 15.81 and Clark-Grid-ZoneA marks 0.887 & 0.784. In terms of 60-minutes prediction, our ConvLSTM has the best performance with RMSE = 19.6 and Clark-Grid-ZoneA=0.714. Our models outperform existing methods in both prediction and clinical accuracy. This research can hopefully support patients with type 1 diabetes to better manage their behavior in a more preventative way and can be used in future real APS context

    Study of Short-Term Personalized Glucose Predictive Models on Type-1 Diabetic Children

    Full text link
    Research in diabetes, especially when it comes to building data-driven models to forecast future glucose values, is hindered by the sensitive nature of the data. Because researchers do not share the same data between studies, progress is hard to assess. This paper aims at comparing the most promising algorithms in the field, namely Feedforward Neural Networks (FFNN), Long Short-Term Memory (LSTM) Recurrent Neural Networks, Extreme Learning Machines (ELM), Support Vector Regression (SVR) and Gaussian Processes (GP). They are personalized and trained on a population of 10 virtual children from the Type 1 Diabetes Metabolic Simulator software to predict future glucose values at a prediction horizon of 30 minutes. The performances of the models are evaluated using the Root Mean Squared Error (RMSE) and the Continuous Glucose-Error Grid Analysis (CG-EGA). While most of the models end up having low RMSE, the GP model with a Dot-Product kernel (GP-DP), a novel usage in the context of glucose prediction, has the lowest. Despite having good RMSE values, we show that the models do not necessarily exhibit a good clinical acceptability, measured by the CG-EGA. Only the LSTM, SVR and GP-DP models have overall acceptable results, each of them performing best in one of the glycemia regions

    Non-Invasive Continuous Glucose Monitoring: Identification of Models for Multi-Sensor Systems

    Get PDF
    Diabetes is a disease that undermines the normal regulation of glucose levels in the blood. In people with diabetes, the body does not secrete insulin (Type 1 diabetes) or derangements occur in both insulin secretion and action (Type 2 diabetes). In spite of the therapy, which is mainly based on controlled regimens of insulin and drug administration, diet, and physical exercise, tuned according to self-monitoring of blood glucose (SMBG) levels 3-4 times a day, blood glucose concentration often exceeds the normal range thresholds of 70-180 mg/dL. While hyperglycaemia mostly affects long-term complications (such as neuropathy, retinopathy, cardiovascular, and heart diseases), hypoglycaemia can be very dangerous in the short-term and, in the worst-case scenario, may bring the patient into hypoglycaemic coma. New scenarios in diabetes treatment have been opened in the last 15 years, when continuous glucose monitoring (CGM) sensors, able to monitor glucose concentration continuously (i.e. with a reading every 1 to 5 min) over several days, entered clinical research. CGM sensors can be used both retrospectively, e.g., to optimize the metabolic control, and in real-time applications, e.g., in the "smart" CGM sensors, able to generate alerts when glucose concentrations are predicted to exceed the normal range thresholds or in the so-called "artificial pancreas". Most CGM sensors exploit needles and are thus invasive, although minimally. In order to improve patients comfort, Non-Invasive Continuous Glucose Monitoring (NI-CGM) technologies have been widely investigated in the last years and their ability to monitor glucose changes in the human body has been demonstrated under highly controlled (e.g. in-clinic) conditions. As soon as these conditions become less favourable (e.g. in daily-life use) several problems have been experienced that can be associated with physiological and environmental perturbations. To tackle this issue, the multisensor concept received greater attention in the last few years. A multisensor consists in the embedding of sensors of different nature within the same device, allowing the measurement of endogenous (glucose, skin perfusion, sweating, movement, etc.) as well as exogenous (temperature, humidity, etc.) factors. The main glucose related signals and those measuring specific detrimental processes have to be combined through a suitable mathematical model with the final goal of estimating glucose non-invasively. White-box models, where differential equations are used to describe the internal behavior of the system, can be rarely considered to combine multisensor measurements because a physical/mechanistic model linking multisensor data to glucose is not easily available. A more viable approach considers black-box models, which do not describe the internal mechanisms of the system under study, but rather depict how the inputs (channels from the non-invasive device) determine the output (estimated glucose values) through a transfer function (which we restrict to the class of multivariate linear models). Unfortunately, numerical problems usually arise in the identication of model parameters, since the multisensor channels are highly correlated (especially for spectroscopy based devices) and for the potentially high dimension of the measurement space. The aim of the thesis is to investigate and evaluate different techniques usable for the identication of the multivariate linear regression models parameters linking multisensor data and glucose. In particular, the following methods are considered: Ordinary Least Squares (OLS); Partial Least Squares (PLS); the Least Absolute Shrinkage and Selection Operator (LASSO) based on l1 norm regularization; Ridge regression based on l2 norm regularization; Elastic Net (EN), based on the combination of the two previous norms. As a case study, we consider data from the Multisensor device mainly based on dielectric and optical sensors developed by Solianis Monitoring AG (Zurich, Switzerland) which partially sponsored the PhD scholarship. Solianis Monitoring AG IP portfolio is now held by Biovotion AG (Zurich, Switzerland). Forty-five recording sessions provided by Solianis Monitoring AG and collected in 6 diabetic human beings undertaken hypo and hyperglycaemic protocols performed at the University Hospital Zurich are considered. The models identified with the aforementioned techniques using a data subset are then assessed against an independent test data subset. Results show that methods controlling complexity outperform OLS during model test. In general, regularization techniques outperform PLS, especially those embedding the l1 norm (LASSO end EN), because they set many channel weights to zero thus resulting more robust to occasional spikes occurring in the Multisensor channels. In particular, the EN model results the best one, sharing both the properties of sparseness and the grouping effect induced by the l1 and l2 norms respectively. In general, results indicate that, although the performance, in terms of overall accuracy, is not yet comparable with that of SMBG enzyme-based needle sensors, the Multisensor platform combined with the Elastic-Net (EN) models is a valid tool for the real-time monitoring of glycaemic trends. An effective application concerns the complement of sparse SMBG measures with glucose trend information within the recently developed concept of dynamic risk for the correct judgment of dangerous events such as hypoglycaemia. The body of the thesis is organized into three main parts: Part I (including Chapters 1 to 4), first gives an introduction of the diabetes disease and of the current technologies for NI-CGM (including the Multisensor device by Solianis) and then states the aims of the thesis; Part II (which includes Chapters 5 to 9), first describes some of the issues to be faced in high dimensional regression problems, and then presents OLS, PLS, LASSO, Ridge and EN using a tutorial example to highlight their advantages and drawbacks; Finally, Part III (including Chapters 10-12), presents the case study with the data set and results. Some concluding remarks and possible future developments end the thesis. In particular, a Monte Carlo procedure to evaluate robustness of the calibration procedure for the Solianis Multisensor device is proposed, together with a new cost function to be used for identifying models

    Precision medicine and artificial intelligence : a pilot study on deep learning for hypoglycemic events detection based on ECG

    Get PDF
    Tracking the fluctuations in blood glucose levels is important for healthy subjects and crucial diabetic patients. Tight glucose monitoring reduces the risk of hypoglycemia, which can result in a series of complications, especially in diabetic patients, such as confusion, irritability, seizure and can even be fatal in specific conditions. Hypoglycemia affects the electrophysiology of the heart. However, due to strong inter-subject heterogeneity, previous studies based on a cohort of subjects failed to deploy electrocardiogram (ECG)-based hypoglycemic detection systems reliably. The current study used personalised medicine approach and Artificial Intelligence (AI) to automatically detect nocturnal hypoglycemia using a few heartbeats of raw ECG signal recorded with non-invasive, wearable devices, in healthy individuals, monitored 24 hours for 14 consecutive days. Additionally, we present a visualisation method enabling clinicians to visualise which part of the ECG signal (e.g., T-wave, ST-interval) is significantly associated with the hypoglycemic event in each subject, overcoming the intelligibility problem of deep-learning methods. These results advance the feasibility of a real-time, non-invasive hypoglycemia alarming system using short excerpts of ECG signal

    Precision medicine and artificial intelligence : a pilot study on deep learning for hypoglycemic events detection based on ECG

    Get PDF
    Tracking the fluctuations in blood glucose levels is important for healthy subjects and crucial diabetic patients. Tight glucose monitoring reduces the risk of hypoglycemia, which can result in a series of complications, especially in diabetic patients, such as confusion, irritability, seizure and can even be fatal in specific conditions. Hypoglycemia affects the electrophysiology of the heart. However, due to strong inter-subject heterogeneity, previous studies based on a cohort of subjects failed to deploy electrocardiogram (ECG)-based hypoglycemic detection systems reliably. The current study used personalised medicine approach and Artificial Intelligence (AI) to automatically detect nocturnal hypoglycemia using a few heartbeats of raw ECG signal recorded with non-invasive, wearable devices, in healthy individuals, monitored 24 hours for 14 consecutive days. Additionally, we present a visualisation method enabling clinicians to visualise which part of the ECG signal (e.g., T-wave, ST-interval) is significantly associated with the hypoglycemic event in each subject, overcoming the intelligibility problem of deep-learning methods. These results advance the feasibility of a real-time, non-invasive hypoglycemia alarming system using short excerpts of ECG signal
    • …
    corecore