2,438 research outputs found

    Data science for health-care: Patient condition recognition

    Get PDF
    >Magister Scientiae - MScThe emergence of the Internet of Things (IoT) and Artificial Intelligence (AI) have elicited increased interest in many areas of our daily lives. These include health, agriculture, aviation, manufacturing, cities management and many others. In the health sector, portable vital sign monitoring devices are being developed using the IoT technology to collect patients’ vital signs in real-time. The vital sign data acquired by wearable devices is quantitative and machine learning techniques can be applied to find hidden patterns in the dataset and help the medical practitioner with decision making. There are about 30000 diseases known to man and no human being can possibly remember all of them, their relations to other diseases, their symptoms and whether the symptoms exhibited by the patients are early warnings of a fatal disease. In light of this, Medical Decision Support Systems (MDSS) can provide assistance in making these crucial assessments. In most decision support systems factors a ect each other; they can be contradictory, competitive, and complementary. All these factors contribute to the overall decision and have di erent degrees of influence [85]. However, while there is more need for automated processes to improve the health-care sector, most of MDSS and the associated devices are still under clinical trials. This thesis revisits cyber physical health systems (CPHS) with the objective of designing and implementing a data analytics platform that provides patient condition monitoring services in terms of patient prioritisation and disease identification [1]. Di erent machine learning algorithms are investigated by the platform as potential candidate for achieving patient prioritisation. These include multiple linear regression, multiple logistic regression, classification and regression decision trees, single hidden layer neural networks and deep neural networks. Graph theory concepts are used to design and implement disease identification. The data analytics platform analyses data from biomedical sensors and other descriptive data provided by the patients (this can be recent data or historical data) stored in a cloud which can be private local health Information organisation (LHIO) or belonging to a regional health information organisation (RHIO). Users of the data analytics platform consisting of medical practitioners and patients are assumed to interact with the platform through cities’ pharmacies , rural E-Health kiosks end user applications

    Drowsiness transitions detection using a wearable device

    Get PDF
    Due to a reduction in reaction time and, consequently, the driver’s concentration, driving when fatigued has become an issue throughout time. Consequently, the likelihood of having an accident and it being fatal increases. In this work, we aim to identify an automatic method capable of detecting drowsiness transitions by considering the time, frequency, and nonlinear domains of heart rate variability. Therefore, the methodology proposed considers the multivariate statistical process control, using principal components analysis, with accelerometer and time, frequency, and nonlinear domains of the heart rate variability extracted by a wearable device. Applying the proposed approach, it was possible to improve the results achieved in the previous studies, where it was able to remove points out-of-control due to signal noise, identify the drowsy transitions, and, consequently, improve the drowsiness classification. It is important to note that the out-of-control points of the heart rate variability are not influenced by external noise. In terms of limitations, this method was not able to detect all drowsiness transitions, and in some individuals, it falls far short of expectations. Regarding this, is essential to understand if there is any pattern or similarity among the participants in which it fails.The project is funded by the “NORTE-01-0247-FEDER-0039720”, supported by Northern Portugal Regional Operational Programme (Norte2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). It was also supported by FCT–Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020.The authors would like to thank everyone who participated in the driving simulations and for the conditions available at the Polytechnic Institute of Cávado and Ave, 4750-810, Barcelos. This work was done in co-promotion between Optimizer-Lda, IPCA, LIACC and ISCCI

    TinyML based Deep Learning Model for Activity Detection

    Get PDF
    Our physical and emotional well-being are directly impacted by our body positions. In addition to promoting a confident, upright image, maintaining good body posture during various activities also ensures that our musculoskeletal system is properly aligned. On the other side, bad posture can result in a number of musculoskeletal conditions, discomfort, and reduced productivity. Accurate systems that can detect posture in real time, activity detection, are required due to the rising use of wearable technology and the growing interest in health and fitness tracking. The goal of this project is to create a TinyML model for wearable activity detection that will allow users to assess their posture and make necessary corrections in order to improve their health and general well-being. The project intends to contribute to the creation of useful posture detection technologies that can be quickly implemented on wearable devices for widespread usage by leveraging machine learning algorithms and wearable sensor data. For reliable posture categorization, the model architecture combines deep neural networks (DNN) and LSTM layers. With the development and implementation of the TinyML model, a significant decrease in the model's power consumption, memory, and latency was achieved without any compromise in the accuracy. This work can be used in the fields of health, wellness, rehabilitation, corporate life, sports and fitness to keep track of calories burned, activity duration, distance traveled, posture analysis, and real-time tracking

    Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics.

    Get PDF
    Fully printed wearable electronics based on two-dimensional (2D) material heterojunction structures also known as heterostructures, such as field-effect transistors, require robust and reproducible printed multi-layer stacks consisting of active channel, dielectric and conductive contact layers. Solution processing of graphite and other layered materials provides low-cost inks enabling printed electronic devices, for example by inkjet printing. However, the limited quality of the 2D-material inks, the complexity of the layered arrangement, and the lack of a dielectric 2D-material ink able to operate at room temperature, under strain and after several washing cycles has impeded the fabrication of electronic devices on textile with fully printed 2D heterostructures. Here we demonstrate fully inkjet-printed 2D-material active heterostructures with graphene and hexagonal-boron nitride (h-BN) inks, and use them to fabricate all inkjet-printed flexible and washable field-effect transistors on textile, reaching a field-effect mobility of ~91 cm2 V-1 s-1, at low voltage (<5 V). This enables fully inkjet-printed electronic circuits, such as reprogrammable volatile memory cells, complementary inverters and OR logic gates

    Innovative IoT Solutions and Wearable Sensing Systems for Monitoring Human Biophysical Parameters: A Review

    Get PDF
    none3noDigital and information technologies are heavily pervading several aspects of human activities, improving our life quality. Health systems are undergoing a real technological revolution, radically changing how medical services are provided, thanks to the wide employment of the Internet of Things (IoT) platforms supporting advanced monitoring services and intelligent inferring systems. This paper reports, at first, a comprehensive overview of innovative sensing systems for monitoring biophysical and psychophysical parameters, all suitable for integration with wearable or portable accessories. Wearable devices represent a headstone on which the IoT-based healthcare platforms are based, providing capillary and real-time monitoring of patient’s conditions. Besides, a survey of modern architectures and supported services by IoT platforms for health monitoring is presented, providing useful insights for developing future healthcare systems. All considered architectures employ wearable devices to gather patient parameters and share them with a cloud platform where they are processed to provide real-time feedback. The reported discussion highlights the structural differences between the discussed frameworks, from the point of view of network configuration, data management strategy, feedback modality, etc.Article Number: 1660openRoberto De Fazio; Massimo De Vittorio; Paolo ViscontiDE FAZIO, Roberto; DE VITTORIO, Massimo; Visconti, Paol
    • …
    corecore