12 research outputs found

    Multiuser Diversity Gain in Cognitive Networks

    Full text link
    Dynamic allocation of resources to the \emph{best} link in large multiuser networks offers considerable improvement in spectral efficiency. This gain, often referred to as \emph{multiuser diversity gain}, can be cast as double-logarithmic growth of the network throughput with the number of users. In this paper we consider large cognitive networks granted concurrent spectrum access with license-holding users. The primary network affords to share its under-utilized spectrum bands with the secondary users. We assess the optimal multiuser diversity gain in the cognitive networks by quantifying how the sum-rate throughput of the network scales with the number of secondary users. For this purpose we look at the optimal pairing of spectrum bands and secondary users, which is supervised by a central entity fully aware of the instantaneous channel conditions, and show that the throughput of the cognitive network scales double-logarithmically with the number of secondary users (NN) and linearly with the number of available spectrum bands (MM), i.e., Mlog⁥log⁥NM\log\log N. We then propose a \emph{distributed} spectrum allocation scheme, which does not necessitate a central controller or any information exchange between different secondary users and still obeys the optimal throughput scaling law. This scheme requires that \emph{some} secondary transmitter-receiver pairs exchange log⁥M\log M information bits among themselves. We also show that the aggregate amount of information exchange between secondary transmitter-receiver pairs is {\em asymptotically} equal to Mlog⁥MM\log M. Finally, we show that our distributed scheme guarantees fairness among the secondary users, meaning that they are equally likely to get access to an available spectrum band.Comment: 32 pages, 3 figures, to appear in the IEEE/ACM Transactions on Networkin

    Multiuser diversity gain in cognitive networks with distributed spectrum access,”

    Get PDF
    Abstract-Opportunistic allocation of resources to the best link in large multiuser networks offers considerable improvement in spectral efficiency, which is often referred to as multiuser diversity gain and can be cast as double logarithmic growth of the network throughput with the number of users. In this paper we consider large decentralized cognitive networks granted concurrent spectrum access with license-holding users. We assume that the primary network affords to accommodate one secondary user per any under-utilized spectrum band and seek allocating such spectrum bands to a subset of the existing secondary users. We first consider the optimal spectrum-secondary user pairing, which is supervised by a central entity fully aware of the instantaneous channel conditions, and show that the throughput of the cognitive network scales double logarithmically with the number of secondary users (N) and linearly with the number of available spectrum bands (M), i.e. M log log N. Next, we propose a distributed spectrum allocation scheme, which does not necessitate a central controller or any information exchange between different secondary users and obeys the optimal throughput scaling law. This scheme requires that some secondary transmitter-receiver pairs exchange log M information bits among themselves. We also show that the aggregate amount of information exchange between secondary transmitter-receiver secondary pairs is also asymptotically equal to M log M. Finally, we show that our distributed scheme, also guarantees fairness among the secondary users, meaning that they are equally likely to get access to an available spectrum band

    Comparison Study of Resource Allocation Strategies for OFDM Multimedia Networks

    Get PDF

    Dynamic Spectrum Sharing in Cognitive Radio and Device-to-Device Systems

    Get PDF
    abstract: Cognitive radio (CR) and device-to-device (D2D) systems are two promising dynamic spectrum access schemes in wireless communication systems to provide improved quality-of-service, and efficient spectrum utilization. This dissertation shows that both CR and D2D systems benefit from properly designed cooperation scheme. In underlay CR systems, where secondary users (SUs) transmit simultaneously with primary users (PUs), reliable communication is by all means guaranteed for PUs, which likely deteriorates SUs’ performance. To overcome this issue, cooperation exclusively among SUs is achieved through multi-user diversity (MUD), where each SU is subject to an instantaneous interference constraint at the primary receiver. Therefore, the active number of SUs satisfying this constraint is random. Under different user distributions with the same mean number of SUs, the stochastic ordering of SU performance metrics including bit error rate (BER), outage probability, and ergodic capacity are made possible even without observing closed form expressions. Furthermore, a cooperation is assumed between primary and secondary networks, where those SUs exceeding the interference constraint facilitate PU’s transmission by relaying its signal. A fundamental performance trade-off between primary and secondary networks is observed, and it is illustrated that the proposed scheme outperforms non-cooperative underlay CR systems in the sense of system overall BER and sum achievable rate. Similar to conventional cellular networks, CR systems suffer from an overloaded receiver having to manage signals from a large number of users. To address this issue, D2D communications has been proposed, where direct transmission links are established between users in close proximity to offload the system traffic. Several new cooperative spectrum access policies are proposed allowing coexistence of multiple D2D pairs in order to improve the spectral efficiency. Despite the additional interference, it is shown that both the cellular user’s (CU) and the individual D2D user's achievable rates can be improved simultaneously when the number of D2D pairs is below a certain threshold, resulting in a significant multiplexing gain in the sense of D2D sum rate. This threshold is quantified for different policies using second order approximations for the average achievable rates for both the CU and the individual D2D user.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Comparison Study of Resource Allocation Strategies for OFDM Multimedia Networks

    Get PDF
    Advanced MAC scheduling schemes provide efficient support of multimedia services in multiuser OFDM wireless networks. Designed in a cross layer approach, they opportunistically consider the channel state and are well adapted to the wireless multipath fading environment. These schedulers take advantage of time, frequency, and multiuser diversity. Thereby they maximize the global system throughput while ensuring the highest possible level of fairness. However their performances heavily depend on the bandwidth granularity (i.e., the number of elementary resource units) that is used in the resource allocation process. This paper presents and compares the main OFDM scheduling techniques. In particular it studies the influence of bandwidth granularity on the resource allocation strategies performances. The paper reveals that though bandwidth granularity has never been considered in former studies, it is of major importance for determining the application range of advanced OFDM scheduling techniques
    corecore