10 research outputs found

    Multitask Learning to Improve Egocentric Action Recognition

    Get PDF
    In this work we employ multitask learning to capitalize on the structure that exists in related supervised tasks to train complex neural networks. It allows training a network for multiple objectives in parallel, in order to improve performance on at least one of them by capitalizing on a shared representation that is developed to accommodate more information than it otherwise would for a single task. We employ this idea to tackle action recognition in egocentric videos by introducing additional supervised tasks. We consider learning the verbs and nouns from which action labels consist of and predict coordinates that capture the hand locations and the gaze-based visual saliency for all the frames of the input video segments. This forces the network to explicitly focus on cues from secondary tasks that it might otherwise have missed resulting in improved inference. Our experiments on EPIC-Kitchens and EGTEA Gaze+ show consistent improvements when training with multiple tasks over the single-task baseline. Furthermore, in EGTEA Gaze+ we outperform the state-of-the-art in action recognition by 3.84%. Apart from actions, our method produces accurate hand and gaze estimations as side tasks, without requiring any additional input at test time other than the RGB video clips.Comment: 10 pages, 3 figures, accepted at the 5th Egocentric Perception, Interaction and Computing (EPIC) workshop at ICCV 2019, code repository: https://github.com/georkap/hand_track_classificatio

    Can Gaze Inform Egocentric Action Recognition?

    Get PDF
    We investigate the hypothesis that gaze-signal can improve egocentric action recognition on the standard benchmark, EGTEA Gaze++ dataset. In contrast to prior work where gaze-signal was only used during training, we formulate a novel neural fusion approach, Cross-modality Attention Blocks (CMA), to leverage gaze-signal for action recognition during inference as well. CMA combines information from different modalities at different levels of abstraction to achieve state-of-the-art performance for egocentric action recognition. Specifically, fusing the video-stream with optical-flow with CMA outperforms the current state-of-the-art by 3%. However, when CMA is employed to fuse gaze-signal with video-stream data, no improvements are observed. Further investigation of this counter-intuitive finding indicates that small spatial overlap between the network's attention-map and gaze ground-truth renders the gaze-signal uninformative for this benchmark. Based on our empirical findings, we recommend improvements to the current benchmark to develop practical systems for egocentric video understanding with gaze-signal.</p

    Bringing Online Egocentric Action Recognition into the wild

    Get PDF
    To enable a safe and effective human-robot cooperation, it is crucial to develop models for the identification of human activities. Egocentric vision seems to be a viable solution to solve this problem, and therefore many works provide deep learning solutions to infer human actions from first person videos. However, although very promising, most of these do not consider the major challenges that comes with a realistic deployment, such as the portability of the model, the need for real-time inference, and the robustness with respect to the novel domains (i.e., new spaces, users, tasks). With this paper, we set the boundaries that egocentric vision models should consider for realistic applications, defining a novel setting of egocentric action recognition in the wild, which encourages researchers to develop novel, applications-aware solutions. We also present a new model-agnostic technique that enables the rapid repurposing of existing architectures in this new context, demonstrating the feasibility to deploy a model on a tiny device (Jetson Nano) and to perform the task directly on the edge with very low energy consumption (2.4W on average at 50 fps)

    Can Gaze Inform Egocentric Action Recognition?

    Get PDF
    We investigate the hypothesis that gaze-signal can improve egocentric action recognition on the standard benchmark, EGTEA Gaze++ dataset. In contrast to prior work where gaze-signal was only used during training, we formulate a novel neural fusion approach, Cross-modality Attention Blocks (CMA), to leverage gaze-signal for action recognition during inference as well. CMA combines information from different modalities at different levels of abstraction to achieve state-of-the-art performance for egocentric action recognition. Specifically, fusing the video-stream with optical-flow with CMA outperforms the current state-of-the-art by 3%. However, when CMA is employed to fuse gaze-signal with video-stream data, no improvements are observed. Further investigation of this counter-intuitive finding indicates that small spatial overlap between the network's attention-map and gaze ground-truth renders the gaze-signal uninformative for this benchmark. Based on our empirical findings, we recommend improvements to the current benchmark to develop practical systems for egocentric video understanding with gaze-signal.</p

    With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition

    Get PDF
    In egocentric videos, actions occur in quick succession. We capitalise on the action's temporal context and propose a method that learns to attend to surrounding actions in order to improve recognition performance. To incorporate the temporal context, we propose a transformer-based multimodal model that ingests video and audio as input modalities, with an explicit language model providing action sequence context to enhance the predictions. We test our approach on EPIC-KITCHENS and EGTEA datasets reporting state-of-the-art performance. Our ablations showcase the advantage of utilising temporal context as well as incorporating audio input modality and language model to rescore predictions. Code and models at: https://github.com/ekazakos/MTCN.Comment: Accepted at BMVC 202

    Measuring hand use in the home after cervical spinal cord injury using egocentric video

    Full text link
    Background: Egocentric video has recently emerged as a potential solution for monitoring hand function in individuals living with tetraplegia in the community, especially for its ability to detect functional use in the home environment. Objective: To develop and validate a wearable vision-based system for measuring hand use in the home among individuals living with tetraplegia. Methods: Several deep learning algorithms for detecting functional hand-object interactions were developed and compared. The most accurate algorithm was used to extract measures of hand function from 65 hours of unscripted video recorded at home by 20 participants with tetraplegia. These measures were: the percentage of interaction time over total recording time (Perc); the average duration of individual interactions (Dur); the number of interactions per hour (Num). To demonstrate the clinical validity of the technology, egocentric measures were correlated with validated clinical assessments of hand function and independence (Graded Redefined Assessment of Strength, Sensibility and Prehension - GRASSP, Upper Extremity Motor Score - UEMS, and Spinal Cord Independent Measure - SCIM). Results: Hand-object interactions were automatically detected with a median F1-score of 0.80 (0.67-0.87). Our results demonstrated that higher UEMS and better prehension were related to greater time spent interacting, whereas higher SCIM and better hand sensation resulted in a higher number of interactions performed during the egocentric video recordings. Conclusions: For the first time, measures of hand function automatically estimated in an unconstrained environment in individuals with tetraplegia have been validated against internationally accepted measures of hand function. Future work will necessitate a formal evaluation of the reliability and responsiveness of the egocentric-based performance measures for hand use

    Egocentric action recognition from noisy videos

    Get PDF
    学位の種別: 修士University of Tokyo(東京大学

    Analysis of the hands in egocentric vision: A survey

    Full text link
    Egocentric vision (a.k.a. first-person vision - FPV) applications have thrived over the past few years, thanks to the availability of affordable wearable cameras and large annotated datasets. The position of the wearable camera (usually mounted on the head) allows recording exactly what the camera wearers have in front of them, in particular hands and manipulated objects. This intrinsic advantage enables the study of the hands from multiple perspectives: localizing hands and their parts within the images; understanding what actions and activities the hands are involved in; and developing human-computer interfaces that rely on hand gestures. In this survey, we review the literature that focuses on the hands using egocentric vision, categorizing the existing approaches into: localization (where are the hands or parts of them?); interpretation (what are the hands doing?); and application (e.g., systems that used egocentric hand cues for solving a specific problem). Moreover, a list of the most prominent datasets with hand-based annotations is provided

    Egocentric Vision-based Action Recognition: A survey

    Get PDF
    [EN] The egocentric action recognition EAR field has recently increased its popularity due to the affordable and lightweight wearable cameras available nowadays such as GoPro and similars. Therefore, the amount of egocentric data generated has increased, triggering the interest in the understanding of egocentric videos. More specifically, the recognition of actions in egocentric videos has gained popularity due to the challenge that it poses: the wild movement of the camera and the lack of context make it hard to recognise actions with a performance similar to that of third-person vision solutions. This has ignited the research interest on the field and, nowadays, many public datasets and competitions can be found in both the machine learning and the computer vision communities. In this survey, we aim to analyse the literature on egocentric vision methods and algorithms. For that, we propose a taxonomy to divide the literature into various categories with subcategories, contributing a more fine-grained classification of the available methods. We also provide a review of the zero-shot approaches used by the EAR community, a methodology that could help to transfer EAR algorithms to real-world applications. Finally, we summarise the datasets used by researchers in the literature.We gratefully acknowledge the support of the Basque Govern-ment's Department of Education for the predoctoral funding of the first author. This work has been supported by the Spanish Government under the FuturAAL-Context project (RTI2018-101045-B-C21) and by the Basque Government under the Deustek project (IT-1078-16-D)

    Multitask Learning to Improve Egocentric Action Recognition

    No full text
    In this work we employ multitask learning to capitalize on the structure that exists in related supervised tasks to train complex neural networks. It allows training a network for multiple objectives in parallel, in order to improve performance on at least one of them by capitalizing on a shared representation that is developed to accommodate more information than it otherwise would for a single task. We employ this idea to tackle action recognition in egocentric videos by introducing additional supervised tasks. We consider learning the verbs and nouns from which action labels consist of and predict coordinates that capture the hand locations and the gaze-based visual saliency for all the frames of the input video segments. This forces the network to explicitly focus on cues from secondary tasks that it might otherwise have missed resulting in improved inference. Our experiments on EPIC-Kitchens and EGTEA Gaze+ show consistent improvements when training with multiple tasks over the single-task baseline. Furthermore, in EGTEA Gaze+ we outperform the state-of-the-art in action recognition by 3.84%. Apart from actions, our method produces accurate hand and gaze estimations as side tasks, without requiring any additional input at test time other than the RGB video clips
    corecore